1

Nobel de Química 2020: a Revolução da CRISPR/CAS9 e suas Criadoras

Em meio a um turbilhão de desafios pessoais, econômicos e profissionais neste ano de 2020, enfim recebemos uma excelente notícia: o prêmio Nobel de química. É a primeira vez que duas cientistas mulheres foram laureadas juntas nesse prêmio. O trabalho de Emmanuelle Charpentier e Jennifer Doudna no desenvolvimento de uma nova tecnologia de edição gênica revolucionou a ciência nos últimos anos e sem dúvida será um marco na história da humanidade. 

A tecnologia CRISPR/CAS9 consiste em moléculas biológicas que são injetadas dentro de uma célula e irão modificar o seu material genético de maneira muito específica. Outras tecnologias com o mesmo propósito já foram criadas e melhoradas desde os anos 1970 e são rotineiramente usadas nos laboratórios de biologia molecular e genética em todo o mundo. A diferença da CRISPR/CAS9 e das tecnologias anteriores é a sua precisão. A CRISPR/CAS9 consegue identificar exatamente a sequência alvo de DNA por meio de um RNA-guia.

A tecnologia CRISPR/CAS9 consiste em uma proteína de clivagem (corte) de DNA, a CAS9, representada em branco na figura e um RNA-guia representado em vermelho. Após o reconhecimento do DNA-alvo (em amarelo) pelo RNA-guia, a CAS9 cliva o DNA realizando a edição genética. Créditos: Thomas Splettstoesser, Wikimedia.

As origens da CRISPR/CAS9 vêm de pesquisas em ciência básica, aquele tipo de ciência que não tem um objetivo prático ou direcionado, como a cura de uma determinada doença. A ciência básica tem como objetivo a simples compreensão de um sistema natural. Inicialmente, as pesquisadoras focaram em compreender como as bactérias se defendem de vírus invasores. Posteriormente, elas usaram esses conhecimentos para desenvolver o sistema CRISPR/CAS9 de edição gênica.

CRISPR é um acrônimo para Clustered Regularly Interspaced Short Palindromic Repeats, que pode ser traduzido como Repetições Clusterizadas Palindrômicas Curtas e Regularmente Espaçadas. Em outras palavras, CRISPR são grupos de sequências bacterianas repetitivas separadas por pedaços de sequências de vírus. Tudo isso está contido no material genético, ou DNA, das bactérias e compõe um tipo de sistema imune contra vírus invasores. Emmanuelle Charpentier imaginou que essas sequências de vírus eram transcritas em pequenos RNAs que guiavam a proteína CAS9 da bactéria até os vírus invasores, os quais eram atacados pela CAS9. Ela e seus colegas mostraram evidências físicas corroborando sua hipótese num artigo científico publicado na revista Nature em 2011.

Logo depois, Charpentier conheceu Jennifer Doudna numa conferência e elas começaram uma colaboração extremamente bem sucedida, que culminou em um outro artigo na revista Science em 2012 e no prêmio Nobel de química em 2020. O artigo de 2012 sedimentou a teoria de Charpentier e mostrou também que podemos usar esse sistema bacteriano em edição gênica. Basta que saibamos a sequência-alvo do RNA guia. Este será acoplado à proteína CAS9 e os dois serão injetados dentro da célula de interesse. Dessa forma, pedaços indesejados de DNA podem ser removidos, e até mesmo sequências novas podem ser inseridas, criando um sistema eficiente e poderoso de edição gênica.

Emmanuelle Charpentier (esquerda) e Jennifer Doudna (direita), laureadas do prêmio Nobel de química de 2020. Na ocasião da foto, as cientistas receberam o prêmio Princesa de Astúrias 2015 por pesquisa técnica e científica. Créditos: Miguel Riopa, AFP via Getty Images.

A CRISPR/CAS9 é bastante utilizada nos laboratórios de todo o mundo. Diversos tipos de edições gênicas são feitas em células biológicas, incluindo bactérias, leveduras, e até mesmo células mamíferas de camundongos, humanos e outros primatas. Apesar do imenso potencial terapêutico, ainda não é fácil usá-la para tratar doenças devido à dificuldade de inserir as moléculas dentro de organismos complexos. Atualmente tais estudos são feitos de maneira local, em sangue e medula óssea, que são mais fáceis de trabalhar. É importante ressaltar que ainda não conhecemos plenamente os efeitos da técnica e também que ela tem uma pequena taxa de erro, que deve ser minimizada ainda mais num tratamento clínico. Em um TED talk importantíssimo em 2015, Jennifer Doudna reforçou a necessidade e responsabilidade da comunidade científica de discutir as implicações futuras do uso da CRISPR/CAS9. 

A patente da técnica está em disputa entre a Universidade da Califórnia (EUA)/Universidade de Viena (Áustria), representadas pelas duas pesquisadoras, e o Instituto Broad (EUA), representado pelo pesquisador Feng Zhang, que também gerou conhecimentos importantes acerca do sistema CRISPR/CAS9. A patente irá gerar milhões de dólares e reconhecimento, mas não deve ser decidida tão cedo.

Emmanuelle Charpentier é especialista em bioquímica e microbiologia, nasceu na França e  trabalha atualmente no Instituto Max Planck para Ciência de Patógenos em Berlim. A bioquímica Jennifer Doudna nasceu nos Estados Unidos e trabalha na Universidade da  Califórnia, Berkeley. Ela também se dedica a mobilizar a comunidade científica a discutir as responsabilidades no uso futuro da tecnologia CRISPR/CAS9. 

O potencial feminino para pesquisa e inovação é enorme e traz diversos benefícios para a sociedade. Por isso, todas as meninas que quiserem devem ser incentivadas e apoiadas em suas carreiras científicas. O trabalho de Charpentier e Doudna é um belíssimo e inspirador exemplo do poder da produção científica e da colaboração feminina.

Referências

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E. “A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity”. Science. 2012 https://science.sciencemag.org/content/337/6096/816 

Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. “CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III”. Nature. 2011 https://www.nature.com/articles/nature09886 

Jennifer Doudna. “How CRISPR let us edit our DNA” TED Talk, TEDGlobal London. 2015 https://www.ted.com/talks/jennifer_doudna_how_crispr_lets_us_edit_our_dna 

Ellen Jorgensen. “What you need to know about CRISPR“. TED Talk, TEDSummit. 2016 https://www.ted.com/talks/ellen_jorgensen_what_you_need_to_know_about_crispr 

John Rennie. “Dr. Paul Janssen Award: Emmanuelle Charpentier, Ph.D and Jennifer Doudna, Ph.D.” Scientific American. 2014 http://www.pauljanssenaward.com/blogs/emmanuelle-charpentier-phd-and-jennifer-doudna-phd

Jon Cohen. “The Latest round in the CRISPR patent battle has an apparent victor, but the fight continues”. Science. 2020  https://www.sciencemag.org/news/2020/09/latest-round-crispr-patent-battle-has-apparent-victor-fight-continues 

0

Bell Burnell, uma história para se inspirar

Em tempos de retrocessos políticos é muito importante buscarmos forças para continuar nas lutas diárias, seja lá qual for a luta que você escolheu se dedicar. Hoje contamos aqui a história de uma mulher cientista (uma das principais astrofísicas do Reino Unido), pessoa generosa que dedica a sua vida por uma ciência que é inclusiva e garantimos que sua história é pura inspiração! Estamos falando da astrônoma Dame Susan Jocelyn Bell Burnell (momento dos aplausos!)

aplausos

Para começar podemos voltar à 1967, quando Bell Burnell estava na pós-graduação na Universidade de Cambridge, no Reino Unido. Foi nesse período que ela encontrou o primeiro Pulsar, que é uma estrela de nêutrons que transforma energia rotacional em energia eletromagnética. U-a-u! Mas o que é isso mesmo?

shock

Quando uma estrela morre, ela pode ter alguns tipos de finais diferentes, dependendo de sua massa. Se for uma estrela relativamente leve (como o nosso sol), ela poderá virar uma anã branca. Se for uma estrela com muita massa ela poderá virar um buraco negro ou uma estrela de nêutrons, também chamada de Pulsar, que foi observada no espaço pela primeira vez em 1967 por Bell Burnell.

Os Pulsares ou estrelas de nêutrons possuem um campo magnético muito grande e, ao fazerem rotação, feixes de radiação escapam pelos pólos magnéticos criando uma luminosidade como um farol no universo.

Lightsmall-optimised

Créditos: Michael Kramer (University of Manchester)

Quando Burnell trouxe esse grande conhecimento astronômico para o mundo era orientada pelo professor Antony Hewish e tinha em sua equipe o colega astrônomo Martin Ryle, que ganharam o Prêmio Nobel de Física em 1974 por conta da descoberta de Bell Burnell, no lugar dela. A comunidade científica nunca aceitou o fato de Bell Burnell não ser devidamente premiada mas em seus relatos, a astrofísica dizia que era apenas uma estudante de ciências e já ganhar o Prêmio Nobel não seria muito adequado…(WHAT?) [1]

Porém, Bell Burnell continuou sua carreira como pesquisadora em astrofísica e brilhou como um farol de Pulsar! Aos 75 anos, Burnell é professora de Astrofísica na Universidade de Oxford, e Chanceler da Universidade de Dundee. E mais recentemente, recebeu reconhecimento em setembro deste ano ganhando o Prêmio Especial de Inovação em Física Fundamental, do Breakthrough of the Year, levando US$ 3 milhões!

E o melhor está por vir! Pois bem, essa semana, durante a cerimônia de entrega da premiação, Burnell irá investir os US$ 3 milhões em bolsas de estudos para mulheres, refugiados e pessoas de etnias minoritárias, com o intuito de promover a diversidade na ciência. Isso mesmo, minhas caras e meus caros, essa mulher, que teve a vida injustiçada como muitas de nós irá lutar para que mais mulheres tenham espaço na carreira científica, não só mulheres como outras minorias. Acho que essa atitude é um lindo pisar nas costelas da sociedade patriarcal, não é mesmo? Em entrevista Burnell ainda disse: “Não quero e nem preciso do dinheiro sozinha, e me pareceu que essa era a melhor maneira de usá-lo”. Olhem bem para esse rostinho da década de 60, respire fundo e continue a lutar. [2]

susan_jocelyn_bell_burnell_1967_2

Créditos: ROGER W HAWORTH/WIKIMEDIA COMMONS

Referências

[1] Revista Galileu – 2018 https://revistagalileu.globo.com/Ciencia/noticia/2018/09/excluida-do-nobel-astronoma-ganha-premio-de-fisica-50-anos-depois-da-incrivel-descoberta.html

[2] BBC – 2018 https://www.bbc.com/portuguese/geral-45432286