2

As luas geladas e suas implicações para a astrobiologia: pelos anéis de Saturno

Parte IV

No começo da nossa viagem pelas “luas geladas” conversamos sobre o que elas precisam ter para receber essa definição (aqui). Também falamos sobre Europa, uma das “luas geladas” mais famosas nos últimos anos (aqui), e sobre Ganimedes, Calisto e Io (e aqui). Hoje iremos ainda mais longe no nosso Sistema Solar a fim de explorar as “luas geladas” de Saturno.

Qualquer lua que seja coberta de gelo pode ser uma “lua gelada”?

Como no texto anterior, gostaria de começar resgatando um trechinho do nosso primeiro texto antes de mergulhar nas nossas novas luas. “Luas geladas” são satélites naturais, cobertos principalmente por gelo, que orbitam os gigantes gasosos do nosso Sistema Solar, sendo eles Júpiter, Saturno, Urano e Netuno. Para que sejam chamados de “luas geladas” é necessário que esses satélites apresentem três características: (1) a presença de um meio líquido, (2) uma fonte de energia, e (3) condições necessárias para a formação de moléculas complexas. Esses quesitos também são considerados responsáveis pelo surgimento e pela manutenção da vida.

Saturno e seus anéis

Comumente vemos Saturno sendo representado, em desenhos e esquemas, envolto por um anel. Porém, se fossemos desenhar o planeta como ele realmente é, ele ficaria muito mais complexo. Saturno possui mais de dez anéis constituídos essencialmente por gelo, poeira e rochas. Além disso, o planeta conta com 62 luas confirmadas até agora. Embora Saturno apresente tantos satélites, apenas duas são classificadas como “luas geladas” e hoje vamos conhecê-las um pouco mais de perto.

Anéis de Saturno

Figura 1. Anéis de Saturno compostos por gelo, poeira e rochas. Fonte: Nasa NASA/JPL-Caltech/SSI.

 Um encontro com Titã

Titã é a maior lua de Saturno e a segunda maior do nosso Sistema Solar, perdendo apenas para Ganimedes (vista na parte III). Titã é também o único satélite do Sistema Solar com uma atmosfera densa e evidência de corpos de água líquida e estável (lagos e rios) em sua superfície.

Titã

Figura 2. Vista de Titã pela Cassini. Fonte: Nasa NASA/JPL-Caltech/SSI.

Modelos teóricos predizem que uma camada de água líquida poderia existir abaixo do gelo na superfície da lua, desde que houvesse uma quantidade suficiente de amônia misturada à água, reduzindo sua temperatura de congelamento. Dessa forma, acredita-se que Titã seja dividida (da superfície para o centro) em uma camada de gelo, uma camada líquida de água e amônia, outra camada de gelo e um núcleo rochoso.

As informações obtidas até agora sobre o oceano de água no interior de Titã não sugerem que ela seja uma boa candidata para o desenvolvimento de formas de vida. Isso porque a camada de gelo sobre a lua parece ser bastante rígida, o que dificultaria as trocas de material entre a superfície e o oceano. Além disso a segunda camada de gelo sobre a crosta isolaria o oceano do núcleo rochoso, impossibilitando a existência dessa interface considerada de extrema importância para o surgimento da vida.

Ainda assim, o oceano aquoso não é o único ambiente de Titã onde poderíamos procurar formas de vida. Caso a vida tenha surgido lá, o ambiente da lua provavelmente levaria os organismos a desenvolverem características muito diferentes de qualquer um existente na Terra. Enquanto todas as formas de vida terrestre usam água como meio líquido, é concebível que a vida em Titã poderia utilizar outros componentes como metano e etano. Outro fator de interesse na busca por vida em Titã consiste no fato de sua atmosfera ser quimicamente ativa, conhecida por ser rica em compostos orgânicos; o que levou a especulações sobre se precursores químicos da vida poderiam ter sua origem lá.

Dessa forma, o ambiente de Titã, embora muito diferente do terrestre, possuiria os requisitos para a vida: (1) metano e etano na forma líquida encontrados em corpos líquidos na superfície do planeta; (2) provavelmente obtida através da radiação solar, que embora seja muito menor, quando comparada à da Terra, ainda suportaria formas de vida de crescimento lento; (3) proveniente da atmosfera quimicamente ativa e derivadas de metano e etano.

 

Um pulo em Encélado

Encélado é a sexta maior lua de Saturno e é aproximadamente 10 vezes menor do que Titã. Estima-se que a lua seja formada por um núcleo rochoso, envolto por um oceano líquido e uma crosta de gelo na superfície.

Encélado

Figura 3. Vista de Encélado pela Cassini com foco nas plumas de água e gelo no polo sul da lua. Fonte: Nasa NASA/JPL-Caltech/SSI.

As primeiras informações sobre Encélado vieram das espaçonaves Voyager Ie II. As mais recentes, porém, foram obtidas pela Cassini em 2005, que revelou mais detalhes sobre a superfície da lua e também confirmou a emissão de plumas de vapor de água e gelo no polo sul da Lua. Cassini também mostrou a existência de uma fina atmosfera ao redor de Encélado e confirmou que sua superfície era composta principalmente por água, gás carbônico e compostos orgânicos simples. O fato de ser totalmente coberta por gelo, torna a lua um dos objetos que mais reflexivos do Sistema Solar. Por refletir a maior parte da luz, a superfície de Encélado é mais fria do que a dos outros satélites de Saturno, podendo atingir -198oC.

Por não possuir água líquida em sua superfície, a existência de vida em Encélado estaria condicionada a presença de água líquida em seu interior. E o movimento da lua em torno de Saturno e a presença das plumas são evidências da presença de um oceano global localizado logo abaixo da camada superficial de gelo.

Um fator de extremo interesse para a astrobiologia é a relativa facilidade de coleta de amostras do oceano de Encélado através das plumas. Coletar material proveniente do oceano diretamente da atmosfera, dispensando missões de pouso e perfuração do gelo da superfície, como se planeja fazer em Europa no futuro, torna a pesquisa de vida em Encélado mais atrativa e economicamente viável com a tecnologia espacial atual.

Então, se olharmos para os nossos critérios de definição de luas geladas teríamos: (1) água existente na forma líquida encontrada logo abaixo da superfície; (2) força de maré originada no oceano interno da lua causada pela interação da lua com Saturno; (3) principalmente suprida pela interação água líquida-núcleo rochoso.

E assim encerramos nosso passeio por Saturno e suas luas! Até a próxima! 🌚❄

Referências:

CANUP, R. M.; WARD, W. R. Formation of the gallilean satellites: conditions of accretionsThe Astronomical Journal, v. 124, n. 6, p. 3404-3423, 2002.

FILACCHIONE, G. et al. Saturn’s icy satellites investigated by Cassini-VIMS: I. Full-disk properties: 350–5100 nm reflectance spectra and phase curves. Icarus, v. 186, n. 1, p. 259-290, 2007.

GALANTE, D. et al. Astrobiologia [livro eletrônico]: uma ciência emergente. Tikinet Edição: IAG/USP, São Paulo, 2016.

IRWIN, L. N.; SCHULZE-MAKUCH, D. Assessing the plausibility of life on other worlds. Astrobiology, v. 1, n. 2, p.143-160, 2001.

PASACHOFF, Jay M.; FILIPPENKO, Alex. The Cosmos: Astronomy in the new millennium. Cambridge University Press, 2013.

SCHUBERT, G. et al. Interior composition, structure and dynamics of the Galilean satellites. Jupiter: The planet, satellites and magnetosphere, v. 1, 2004.

SHOWMAN, A. P.; MALHOTRA, R. The Galilean satellites. Science, v. 286, p. 77-84, 1999.

WORTH, R. J.; SIGURDSSON, S.; HOUSE, C. H. Seeding life on the moons of the outer planets via lithopanspermia. Astrobiology, v. 13, p. 1155-1165, 2013.

 

 

Anúncios
1

Put a Ring on it: Os novos anéis do Sistema Solar

single-ladies

Beyoncé e suas amigas que gostam de anéis

Saturno, o segundo maior planeta do Sistema Solar, sempre chamou grande atenção por seus lindos anéis. Os aneis de Saturno foram detectados pela primeira vez em 1610 por Galileu Galilei. Os anéis de Saturno são feitos de gelo e rocha de diversos tamanhos. Alguns são tão pequenos como um grão de areia e outros são tão grandes como uma casa. Por muito tempo pensou-se que Saturno era o único objeto com tal característica, mas tempos depois descobriu-se que os anéis não eram um privilégio de Saturno mas todos os planetas gigantes do Sistema Solar apresentam anéis, mesmo que não tão majestosos como o de Saturno. Apesar de ser uma descoberta de longa data, os cientistas não sabem quando e como os anéis se formaram.

saturns-rings

Saturno com seus majestosos anéis. Fonte: Istock/Getty Images

Parecia que este tipo de estrutura era formada em apenas planetas gigantes mas uma descoberta brasileira de 2014 revelou que era possível anéis em asteróides. Os pesquisadores do Observatório Nacional detectaram a presença de não apenas um, mas de dois anéis no objeto (10199) Chariklo, o que foi uma grande surpresa. Chariklo é pertencente aos Centauros, uma classe de pequenos objetos que se encontram entre Júpiter e Netuno. Chariklo tem um raio de cerca de 124 km. Os dois densos anéis tem 7 e 3 km de largura e foram batizados de Oiapoque e Chuí, uma referência aos extremos do Brasil. A maior parte da composição dos anéis é de água congelada. [1]

chariklo

Chariklo e os anéis Oiapoque e Chuí. Fonte: The Space Reporter.

No dia 3 de junho de 2013, Chariklo passaria em frente à estrela UCAC4 248-108672, uma estrela distante. As observações foram feitas em diversos sítios de localizados no Brasil, Argentina, Uruguai e Chile. Durante o eclipse, os astrônomos puderam observar a silhueta do asteroide com mais cuidado. Os resultados de Chariklo, no entanto, surpreenderam. O brilho da estrela foi bloqueado em dois momentos inesperados, instantes antes e instantes depois da passagem do asteroide, como podemos observar no vídeo. Era um sinal de que Chariklo não estava sozinho. “Nós não estávamos procurando por anéis, e não achávamos que corpos tão pequenos quanto Chariklo tivessem anéis. Por isso essa descoberta – e a imensa quantidade de detalhes que conseguimos observar no sistema – foram uma grande surpresa”, declarou Felipe Braga Ribas, o principal pesquisador envolvido na descoberta. [3]

Os anéis ainda explicam um fenômeno observado quando da descoberta do asteroide em 1997. Quando avistado pela primeira vez, ele era um corpo brilhante, cuja luminosidade diminuiu até ressurgir em 2008. Isso aconteceu porque seus anéis, formados em grande parte por água congelada, refletem a luz como grandes espelhos. Entre 1997 e 2008, no entanto, a superfície refletora ficou voltada na direção oposta à Terra.

A ciência não para e um time composto por diversos brasileiros, inclusive muitos dos que estiveram envolvidos na descoberta dos anéis de Chariklo, anunciaram em meados de Outubro uma nova descoberta: um anel em um planeta anão!

O planeta anão Haumea é um objeto interessante, gira em torno do Sol em uma órbita elíptica que leva 284 anos, e leva apenas 3,9 horas para girar em torno de seu próprio eixo, muito menos que qualquer outro corpo que mede mais de cem quilômetros de comprimento em todo o Sistema Solar. Esta velocidade de rotação faz com que ele tenha uma forma elipsoidal semelhante a uma bola de rugby. Os dados recentemente publicados revelam que Haumea mede 2.320 km no seu maior eixo, quase o mesmo que Plutão. [2]

Haumea2_0

Haumea (esquerda) e Plutão (direita). Fonte: Sylvain Cnudde – SIGAL – LESIA, Observatoire de Paris

De acordo com os dados obtidos a partir da ocultação estelar, o anel fica no plano equatorial do planeta anão, assim como o seu maior satélite, Hi’iaka, e exibe uma ressonância 3:1 em relação à rotação de Haumea, o que significa que as partículas congeladas que compõem o anel rodam três vezes mais lentamente ao redor do planeta do que gira em torno de seu próprio eixo.[4]

A origem destes anéis não foi esclarecida ainda. Uma hipótese é que a composição dos anéis podem ser remanescentes do disco de poeira primordial que ficou confinado. Outras possibilidades seriam colisão com outro objeto, ou na dispersão do material de superfície devido à alta velocidade de rotação do planeta no caso de Haumea.

Referências:

[1] Braga-Ribas, F. et al., A ring system detected around the Centaur (10199) Chariklo, ature. Nature, Volume 508, Issue 7494, pp. 72-75 (2014). https://arxiv.org/abs/1409.7259

[2] Ortiz, J.L., et al. The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation. Nature, Volume 550, Issue 7675, pp. 219-223 (2017). http://www.nature.com/nature/journal/v550/n7675/full/nature24051.html?foxtrotcallback=true

[3] http://epoca.globo.com/tempo/noticia/2014/03/brasileiros-descobrem-bsistema-de-aneisb-em-torno-de-asteroide.html

[4] http://www.iaa.es/en/news/haumea-most-peculiar-pluto-companions-has-ring-around-it

0

Exploração Espacial: Perdidos no sonho de ir para Marte

O que você precisa para viver?  O que é essencial na sua vida? Ar? Água? Uma terra que dê alimentos? A luz do sol que contribui para esse alimento ser produzido? E outras pessoas, casas, ruas, cidades, movimentos, produções, consumo, arte, músicas, amor, sexo, prazeres, culturas, histórias, memórias, tecnologias, internet…E se tivéssemos mais uma chance de nos adaptarmos a um planeta e pudéssemos construir tudo de novo? Quais seriam as suas escolhas?

Em meio ao caos terrestre algumas pessoas olham para o céu e imaginam uma nova civilização num planeta que traz o nome do Deus grego da guerra, o planeta Marte.

marte e terra

créditos: NASA

Entender que existe um espírito explorador e curioso em nós, seres humanos, não é muito difícil, não é mesmo? Mas o difícil é compreender o porquê dessa busca por um planeta, que, por mais que traga algumas semelhanças químicas e físicas em relação à Terra e por mais próximo que seja,  ainda é um lugar inóspito. Os gastos necessários para essa exploração espacial seriam altíssimos, e isso deve ser questionado. A distância média entre a Terra e Marte é de 78 milhões e 300 mil km. Pode-se observar que sua maior proximidade em relação ao nosso planeta foi cerca de 55 milhões de km de distância em 2003, o que não acontecia a 60.000 anos. E teremos um novo período de proximidade que será em 2018, o que facilitaria, no presente, nosso deslocamento para lá [1].

Importante para essa reflexão é pensar que estamos falando sobre exploração, que por mais que seja espacial (e para Marte) não deixa de ser  uma exploração, que tem como base uma lógica de mercado estabelecida pelo modelo econômico atual, cuja existência move a economia, as políticas e questões sociais. É essencial para o entendimento de pesquisas saber sobre o financiamento dessas e, no caso da exploração espacial, não são apenas as empresas privadas e os impostos dos governos que financiam as pesquisas para esse tipo de exploração (e todas as outras) mas também as pessoas, a sociedade que consome produtos dessas “empresas financiadoras” e paga esses impostos. O que não faz muito sentido é que essas pessoas costumam não saber no que estão investindo, existe uma falsa liberdade enraizada ao modelo econômico que criamos, pois por mais que achemos que temos o poder de decisão sobre as nossas escolhas, elas estão fadadas aos investimentos impostos pelo capitalismo e todas as suas consequências [2].  As dificuldades de se divulgar e popularizar as ciências também colaboram para essa realidade, pois se a comunicação científica fosse mais acessível a todas às pessoas, essas poderiam se tornar mais engajadas e, como consequência, lutariam pelo seu poder nas tomadas de decisões políticas, determinando as pesquisas que seriam financiadas, por exemplo. De certo que estudos científicos são financiados para ajudar a alcançar objetivos políticos, econômicos e sociais diversos, mas ainda sim trazem consigo um distanciamento de uma grande camada da sociedade. A consequência disso é que a ciência é incapaz de estabelecer suas próprias prioridades e a exploração espacial vem de escolhas estabelecidas historicamente e é um exemplo dessa relação entre os cidadãos comuns e a comunidade científica [3].

Mas quando essa curiosidade por Marte começou? Ok, podemos ir bem distante com essa pergunta! Coloca aí na máquina do tempo: Voltar 4.000 anos!

máquina do tempo

Créditos: Scibreak

No ano 2.000 a.c. o planeta Marte demonstrava ser um lugar especial para alguns sonhadores. Os egípcios desenhavam a imagem de Marte em tumbas, como por exemplo, na tumba do Faraó Setil I. Também os babilônios, os chineses e até os gregos faziam registros do planeta vermelho nesse período. É interessante perceber que esse planeta com cor de sangue já teve até outros nomes, mas todos representavam Deuses de guerras, por conta de sua cor [4].

deus guerra

Representação do Deus Egípcio da Guerra.
Créditos: Kalyzatf

Com o passar do tempo, Marte não era somente contemplado e observado no céu. A vontade de conhecer outros planetas e saber sobre a possibilidade de vida extraterrestre fez com que imaginássemos e criássemos histórias vividas nesse planeta. a partir do século XIX o mercado cinematográfico começou a produzir diversos filmes sobre o planeta vermelho que tanto nos instiga [5].
filme 1 Flashgordontriptomarsfilme 2

 

 

 

Imagens dos primeiros filmes sobre Marte.
Crédtios: Flash Gordon Wiki 

 

Essa vontade (insana, até então) de conhecer e explorar Marte foi se materializando durante a primeira corrida espacial no período da guerra Fria (1947 – 1991), logo depois do astronauta norte-americano Neil Armstrong pisar na lua, em 1969. Ir para o espaço e pisar no nosso satélite natural não era mais suficiente. Precisávamos de mais: ir para outro planeta, e um dos nossos vizinhos mais próximos foi o indicado: Marte! [6]

As primeiras pesquisas desenvolvidas para conhecer esse planeta tinham como questão inspiradora a possibilidade de vida extraterrestre, ainda mais depois de ter encontrado metano na composição de sua atmosfera (isso porque a concentração de metano na atmosfera do nosso planeta vem das vidas aqui presentes), além de oxigênio e gás carbônico. Mas percebemos que essa taxa de metano na atmosfera de Marte pode ser produzida por um processo geoquímico, vulcânico ou até por atividade hidrotérmica. Depois veio a tona o entendimento de que Marte poderia ser o futuro da Terra, que seria a sua imagem depois de um colapso e a possibilidade de vida neste lugar se tornou inviável. Por conta disso a ideia de explorar Marte passou a ser justificada pela necessidade de  entender melhor os processos que levaram Marte a tornar-se um grande deserto, e assim, talvez prevenir que eventos similares acontecessem na Terra. O desejo de fazer uma viagem espacial mais distante e colonizar Marte foi surgindo e tornou-se um dos objetivos nessa exploração espacial (como se fosse super simples, né?).

No início da exploração de Marte, mais da metade das missões foram mal-sucedidas. Neste século, isso tem mudado, atualmente há 5 satélites orbitando Marte e transmitindo dados para a Terra: Mars Odyssey (EUA), Mars Reconnaissance Orbiter (EUA), Maven (EUA), Mars Express (ESA\Europa) e Mars Orbiter Mission (Índia). Além disso, há 3 anos existem robôs circulando pela paisagem marciana: O Spirit e o Opportunity, lançados em 2003 e o Curiosity, que pousou no planeta vermelho em 2012. Seus estudos têm ajudado a conhecer melhor a composição do solo marciano e a história evolutiva do planeta.

As missões tripuladas para o espaço deixaram de ser uma prioridade nas últimas décadas e foram substituídas pelo envio de sondas e robôs. Enviamos nossas máquinas exploradoras para estudar a Lua, Marte e praticamente todos os nossos planetas vizinhos, além de cometas e asteroides.

Hoje a maioria das agências espaciais trabalham em parceria, contribuindo para o caráter internacional do campo. As maiores potências da Terra, no entanto, demonstram interesse e sonham com a primeira viagem tripulada para Marte. Porém é sabido que os custos para essa viagem seriam altíssimos e precisaríamos evoluir nas pesquisas para construir tecnologias essenciais para habitar o planeta vermelho.

Mas vamos lá, que chegue um dia que tenhamos capital e tecnologia suficientes para ir à Marte. O que já sabemos desse planeta? Como poderíamos nos estabelecer?

 

Características físicas de Marte

Com as informações captadas pelas sondas em órbita e os robôs de Marte sabemos que sua atmosfera é relativamente fina e composta principalmente por gás carbônico, sendo 95,32% de sua porcentagem, mais 3% de nitrogênio, 1,6% de argônio, contendo traços de oxigênio, água e metano. Diferente da Terra com sua atmosfera com cerca de 0,03% do gás carbônico, com 78,08% de nitrogênio, 20,95% de oxigênio e 0,93% de argônio, além de moléculas de água. A atmosfera marciana é um tanto quanto empoeirada, dando aos céus de Marte um colorido marrom claro ou laranja quando visto de sua superfície; os dados dos veículos exploradores de Marte indicam que as partículas de poeira suspensas na atmosfera são de cerca de 1,5 micrômetros. A pressão atmosférica sobre a superfície de Marte varia entre 30 pascals, no pico de Monte Olimpus (você já vai saber o que é esse monte!), e acima de 1.155 pascals nas profundidades de Hellas Planitia. Com isso, sua pressão média superficial é de 600 pascals, que podemos comparar ao nível médio do mar terrestre de 101,3 quilopascals e uma massa total de 25 teratoneladas, comparada à da Terra, de 5.148 teratoneladas.

mars

Foto de Marte.
Créditos: NASA


Já ouviram falar sobre o Monte Olimpus da Mitologia Grega? Esse lugar da morada de doze deuses tem endereço e está em solo marciano. O Monte Olimpus é a maior montanha vulcânica do Sistema Solar e está presente no planeta Marte. Com uma altura de mais de 25 km, ele é quase três vezes maior que o Monte Everest. O Monte Olimpus é o mais novo dentre os grandes vulcões de Marte e tornou-se conhecido pelos astrônomos no fim do século XIX.

monte olimpus

Imagem geográfica do Monte Olimpus.
Crédito: NASA


Em Marte há um sistema de cânions chamado Valles Marineris, que é o maior cânion conhecido, ultrapassando todos os cânions da Terra, com exceção do vale profundo submarino nos 16.000 km de extensão da Dorsal meso-atlântica.

Valles Marineris situa-se no equador de Marte, a leste de um planalto chamado Tharsis, e se estende por quase um quarto da circunferência do planeta. A maior parte dos pesquisadores concorda que Valles Marineris é uma grande rachadura tectônica na crosta marciana que se formou quando a crosta se elevou a oeste na região de Tharsis, tendo sido subsequentemente alargada por forças eólicas erosivas. Parece haver alguns canais que podem ter sido formados por água ou dióxido de carbono.

valleus mars

Foto de Valles Marineris.
Créditos: NASA

Há a presença de redemoinhos constantes na superfície de Marte e cientistas encontraram pistas de que eles poderiam ter campos elétricos de alta tensão. Esta e outras pesquisas incentivadas por diversas agências espaciais obtiveram dados da superfície de Marte que contribuem para o nosso conhecimento, ajudando na compreensão dos desafios apresentados pelo ambiente Marciano aos exploradores, tanto robóticos quanto possíveis humanos.

 

Desafios de civilizar Marte

A partir  dessas informações sobre o ambiente de Marte, podemos listar nossas futuras e principais dificuldades de civilizar esse planeta:

Radiação – a atmosfera de marte é mais fina que a da terra e não protege contra a radiação do espaço, portanto, será preciso desenvolver um isolamento capaz de proteger a vida humana no interior da base avançada por longos períodos. Cobrir a colônia humana na superfície com camadas do próprio solo marciano pode ajudar. Isso quer dizer que precisaríamos viver enclausurados durante muito tempo. Isso seria possível pra você?

Gravidade – Além de proteger os astronautas contra a radiação para trabalhos em áreas abertas, os trajes espaciais dos colonos marcianos provavelmente serão desenhados para compensar o longo período de viagem sem gravidade no espaço e também a gravidade reduzida do planeta. Seus efeitos podem causar graves problemas de saúde ao organismo humano.  Você se arriscaria?

Comida – No início da exploração a comida precisará ser produzida em marte e será basicamente vegetariana. Os astronautas ou os colonos cultivarão seus alimentos de forma hidropônica, ou seja, sem o uso do solo marciano. A água utilizada para hidroponia precisará ser retirada do solo e será dividida entre outros processos que necessitam dela.  Será que a água será suficiente para uma grande produção hidropônica além de suas outras funções (como consumo, produções tecnológicas, cozinhar, tomar banho, entre outras)?

Oxigênio – O oxigênio necessário à vida humana é escasso na atmosfera de Marte. Este poderá ser obtido a partir do próprio gás carbônico abundante na atmosfera do planeta ou das moléculas de água do solo. O desafio em relação a quantidade de oxigênio é saber se a produção deste será suficiente para manter a vida.

Água – a água encontrada no planeta está congelada. Esta poderá ser obtida a partir do solo marciano, com equipamentos especiais que terão que ser levados ao planeta nas primeiras expedições. O desafio é saber se há água suficiente para manter a base espacial em solo marciano.

Viagem de volta – a logística para escapar da gravidade do planeta e permitir uma viagem de volta é, por enquanto, impossível. Sem falar da velocidade da viagem de volta que irá tornar a passagem superaquecida pela atmosfera da Terra. A tecnologia para a volta à Terra terá que ser produzida em base marciana. Será possível a produção de novos equipamentos que poderão permitir a passagem por diferentes gravidades e uma viagem de retorno?

 

E Marte pode ficar verde? Poderíamos fazer uma “terraformação” de marte transformando a superfície congelada em algo mais parecido com a Terra? É provável que sim. Sondas espaciais que exploram marte encontraram evidências que o planeta já foi quente eras atrás, com rios que drenavam para mares vastos. E aqui na Terra, nós aprendemos como aquecer um planeta: basta adicionar gases de efeito estufa em sua atmosfera. Grande parte do dióxido de carbono que uma vez aqueceu marte provavelmente ainda está lá, nas terras congeladas e calotas polares, assim como a água. Mas tudo isso precisaria de um grande orçamento e de muito tempo, cerca de 1000 anos de adaptação.

A partir dessas e de outras informações sobre as características de Marte e as tendências de desafios que teremos que passar, iniciou um estudo sobre como seria a base marciana para tripulantes humanos que chegassem ao solo do planeta vermelho.

Primeiro será enviado um módulo de habitação com proteção contra a radiação à base marciana. Haverá aumento da temperatura com a implantação de grandes fábricas liberando gases de efeito estufa, o que trará como consequência o descongelamento das calotas, proporcionando temperaturas mais altas e uma fluidez ao ciclo de água. As chuvas cairiam anos depois e os primeiros micróbios poderiam surgir, preparando os solos para as flores e plantas se adaptarem. A produção de energia nas bases seria a partir da energia eólica e nuclear. Com tudo isso, a taxa de oxigênio irá aumentar mas continuará baixa comparada ao planeta Terra mesmo depois de 1000 anos. Ao longo do tempo geológico, antes que a própria Terra se torne inabitável, Marte perderia sua nova atmosfera e congelaria de novo [7].

 

A humanidade, Gaia e Marte

Diante dessa breve história sobre o desejo de explorar e ocupar Marte, podemos imaginar as possíveis futuras histórias dessa temática. A partir do contexto em que vivemos e a consciência sobre o sistema capitalista é necessário nos questionarmos até que ponto a humanidade é capaz de ir. A teoria de Gaia, desenvolvida pelo cientista James Lovelock na década de 1970 afirma que o planeta Terra é um ser vivo. O cientista chegou a essa conclusão diante da observação de sua atmosfera, de seus movimentos naturais e dos ciclos de compostos (ciclo de O2 e ciclo de H20, por exemplo), que mais parecem um metabolismo vivo. Segundo essa teoria o planeta Terra é Gaia, em homenagem a deusa da Mitologia grega que dá a vida. Analogamente, se a Terra fosse um ser vivo, nós, seres humanos, seríamos os vírus exploradores que infectam esse corpo, trazendo como uma das consequências o aquecimento global ou a febre do corpo doente. Imaginando o que o cientista James Lovelock diria sobre a temática da exploração espacial para Marte, acredito que ele diria que nós, os vírus, queremos infectar mais um corpo (planeta Marte) e por onde passamos afetamos. No entanto parece ser inviável ir para Marte…mas para nós, viver sem sonhar? Não dá! [8]

o-que-aprendi-com-perdido-em-marte.html

Filme “Perdido em Marte”.
Créditos: Portal do Holanda

 

Referências

[1] Revista Veja – Abril. Marte atinge ponto mais perto da Terra em 11 anos nesta segunda, 2016.

[2] Flusser, Vilém [1920-1991] O mundo codificado: por uma filosofia de design e da comunicação: Vilém, Flusser, organizado por Rafael cardoso. Tradução: Raquel Abi-Sâmara. 224p. São Paulo: Ubu Editora, 2017.

[3] Harari, Yuval Noah, 1976 – Sapiens – Uma breve história da humanidade | Yuval Noah Harari; tradução Janaína Marcoantonio. 464p.- 12. Ed. – Porto Alegre, RS: L&PM, 2016.

[4] http://historiadomundo.uol.com.br/egipcia/arte-e-arquitetura-do-egito.htm

[5] http://wwwkalyzatf2009.blogspot.com.br/

[6] http://flashgordon.wikia.com/wiki/Flash_Gordon%27s_Trip_to_Mars

[7] Menezes, Leonardo. Amanhãs – Exploração Espacial, Museu do Amanhã, 2015.

[8] Lovelock, James. Gaia, uma teoria do conhecimento. Editora Saraiva, 2014.