0

Descobrindo novos planetas, redescobrindo a Terra

Sempre nos perguntamos se estamos sozinhos no Universo. A probabilidade é que não estejamos: já se conhece mais de 4.000 planetas fora do Sistema Solar e é possível que existam mais de 60 bilhões de planetas com chances de habitabilidade parecidas com o nosso em todo o Universo. Se vamos conseguir achar vida – para não dizer vida complexa – nesses planetas é outra história. O exoplaneta em zona habitável mais próximo de nós, Proxima Centauri b, está a mais de quatro anos-luz de distância de nós. Se a mera ideia de viajar até lá está bem distante da realidade, encontrar um planeta “substituto” para a Terra está ainda mais distante no horizonte de possibilidades. A ciência diz que não existe mesmo um “planeta B”.

A astrônoma Raphaëlle Haywood, Sagan Fellow no Harvard College Observatory (EUA), tem plena consciência disso e busca compartilhar esta perspectiva ganha com anos de pesquisa sobre exoplanetas. Para ela, a descoberta de planetas longínquos “é uma nova revolução Copernicana” que nos ajuda a enxergar com mais clareza o nosso lugar no Universo – e nos ajuda, também, a entender que é preciso cuidar bem da Terra, nossa casa e único planeta comprovadamente habitável que conhecemos. 

Haywood conta um pouco mais o assunto nesta entrevista ao blog Cientistas Feministas.

DSC_0446

Raphaëlle Haywood (arquivo pessoal)

Quando você percebeu que queria ser uma astrônoma?

Quando criança, a primeira coisa que eu queria ser era florista. Eu amo flores, árvores e plantas… e depois eu queria ser uma botânica. E desde sempre, eu sabia que eu queria fazer um doutorado. Meu pai fez doutorado (em ornitologia), e acho que isso teve uma influência forte para mim desde pequena. Minha mãe tem um mestrado em biologia e minha família tem uma veia acadêmica bastante forte, e me sinto muito sortuda por isso e por ter tido bons professores. 

Então desde cedo eu sabia que queria fazer um doutorado, mas não sabia ainda em que área. Quando mais nova, pensava bastante em botânica, mas, quando me tornei adolescente, comecei a pensar em astronomia. Eu queria muito entender como o mundo funciona e que padrões existem no funcionamento das coisas – e então fui estudar Física, o que parecia um percurso natural, porque a Física te ajuda a entender como o mundo natural e as coisas funcionam. Tive uma professora que ensinava sobre estrelas e planetas – ela me contou sobre esse grupo de pesquisa na Escócia (na Universidade de St. Andrews), que se debruçava sobre planetas fora do nosso sistema solar, ou exoplanetas. E então se tornou muito claro para mim que eu queria trabalhar com isso, e fui para lá pesquisar isso no doutorado. 

A sua pesquisa envolve encontrar e caracterizar planetas pequenos no entorno de estrelas fora do nosso sistema solar. Como se encontra e se mede estes exoplanetas?

Quando se tem um planeta orbitando uma estrela, esse planeta gira ao redor dela porque a gravidade dessa estrela “puxa” esse planeta para perto. Ao mesmo tempo, esse planeta está exercendo uma força contrária sobre essa estrela também, mas proporcional ao seu tamanho. Quando o planeta é pequeno, ele exerce uma força pequena sobre a estrela – é pequena, mas está lá. Então a estrela “balança” um pouco – e esse “bamboleio” cria uma oscilação na luz da estrela. 

Luz é basicamente onda – e as cores que vemos no arco-íris têm comprimentos de onda um pouco diferentes entre si. Nós vemos, por exemplo, a luz do nosso Sol como amarela – e quando a luz de uma estrela como o Sol oscila, a luz vai do azul para o vermelho, mas em uma quantidade muito, muito pequena – e conseguimos medir essa variação entre azul e vermelho usando telescópios pequenos e incrivelmente precisos. O tamanho dessa variação de luz depende da massa do planeta que estamos observando. Então, por exemplo, se estamos olhando para um planeta grande e massivo, vamos ter mais azul e mais vermelho. 

Descobrir a massa e o tamanho de um exoplaneta é o mais fundamental quando se faz esse tipo de pesquisa. Olhamos para a estrela e, em alguns casos, o planeta passa bem na frente dela, fazendo um pouco de sombra. O tamanho dessa sombra, ou dessa pequena queda na emissão de luz, nos diz muito sobre o tamanho desse corpo celeste – que vamos perceber como planeta se fizer esse trânsito sempre à mesma velocidade e de forma regular. 

kepler_all-planets_may2016

Impressão artística de exoplanetas encontrados pela sonda Kepler (Imagem: NASA/W. Stenzel)

Como entender o funcionamento do nosso Sol pode ajudar a procura por exoplanetas?

É importante ter um pouco de perspectiva. Quando falamos de exoplanetas, estamos falando de planetas que orbitam estrelas muito, muito longe de nós. Aquelas estrelas que vemos no céu à noite são as mais brilhantes do céu – e muitos dos exoplanetas que estudamos estão orbitando essas estrelas. E tudo o que fazemos, de fato, é estudá-las – porque só conseguimos informação sobre exoplanetas de forma indireta, observando como eles afetam a luz das estrelas que orbitam. É como se a estrela fosse o farol de um carro que está a dois campos de futebol de distância de você – e você está procurando por um mosquito passando à frente desse farol. Tudo o que fazemos, de fato, é observar esse farol. 

Estamos procurando por planetas muito menores que suas estrelas – e há fluídos de plasma super quentes em erupção, sendo ejetados e voltando à superfície, e há campos magnéticos e manchas escuras… há muitas coisas acontecendo na superfície de uma estrela, que não é completamente uniforme. Então, precisamos corrigir esses efeitos todos para conseguirmos desemaranhar os sinais e entender a influência indireta que o planeta tem sobre a luz dessa estrela – e que melhor forma de fazer isso do que olhando para o nosso Sol? Nós o conhecemos muito bem – conseguimos ver os detalhes de sua superfície, suas manchas… a superfície do Sol é como a pele de uma laranja, não é lisa – e há outras estrelas assim também. Mas não conseguimos ver a superfície delas tão bem, porque estão muito mais longe – mas conseguimos ver mudanças na luminosidade delas ao longo do tempo. Como essas estrelas giram sobre si mesmas, as manchas aparecem e desaparecem, causando variações na luz delas também.

Mas então, como se diferencia uma mancha escura de um planeta orbitando essa estrela? Porque pode-se confundir os dois, não?

Sim, isso é um risco e já aconteceu. Em algumas das primeiras detecções de exoplanetas, pensamos que era um exoplaneta, quando na verdade era uma mancha. 

Para não confundir as duas coisas é preciso conhecer a estrela, como ela funciona, se tem manchas ou não, com que frequência essas manchas aparecem, como elas evoluirão com o tempo… Uma forma muito boa de se saber se temos um planeta ou não é ter duas detecções diferentes com métodos separados. Eu falava do método de trânsito e do método em que se vê azul e vermelho na estrela quando um planeta passa na frente de uma estrela. Se você consegue ver o trânsito de um planeta e também o “bamboleio” que esse planeta induz na estrela, então pode ter certeza que este é um planeta, mesmo. 

Estudando planetas distantes, você começou a prestar mais atenção aos processos naturais acontecendo aqui mesmo, na Terra. Como isso aconteceu?

Foram duas coisas: uma é minha paixão por plantas, árvores… e ter sido extremamente sortuda durante meu doutorado e agora no pós-doutorado, tendo a oportunidade de viajar para tantos lugares para fazer pesquisa, observações e participar de conferências. Conhecer tantos lugares me fez apreciar melhor o nosso planeta. 

Ao mesmo tempo, paro e penso que estou procurando por outros lugares como a Terra no meu trabalho. E ao fazer isso, percebo que sim, estamos começando a encontrar muitos planetas que têm algumas semelhanças com o nosso – eles são um pouco maiores e mais massivos (porque esses são mais fáceis de encontrar) – e se extrapolarmos sobre esses achados, esperamos que existam muitos outros planetas que se pareçam de alguma forma com a Terra. Mas acontece que nenhum deles será exatamente igual à Terra, certo? Mesmo um planeta gêmeo seria muito diferente – e isso me dá uma razão adicional para apreciar o que temos aqui na Terra. O que temos é muito precioso – e se quisermos manter nosso lar habitável para nós mesmos, temos que trabalhar para isso. Não existem outros lugares como aqui.

2159_webTRAPPIST-1e_LEO_12x18

É provável que o turismo para outros planetas habitáveis ainda permaneça no reino da ficção científica por muito tempo (Imagem: NASA-JPL/Caltech)

É uma perspectiva bastante ampla para pensar sobre sobre nosso planeta e nosso lugar no Universo. 

O fato de que estamos encontrando todos esses planetas fora do sistema solar… isso é algo sobre o qual a humanidade tem pensado por milênios. E todo mundo em algum momento, especialmente enquanto criança, já olhou para o céu – e pode ter se perguntado em algum momento se existem outros planetas como o nosso lá fora ou se esses planetas têm vida. As perguntas são muito antigas e as respostas são muito recentes: o primeiro exoplaneta encontrado fora do sistema solar, 51 Pegasi b, foi descoberto em 1995. E o que estamos vivendo com esses achados é uma nova revolução Copernicana – está nos fazendo repensar o nosso lugar no Universo e nos dando uma outra perspectiva. Acho que essas descobertas estão nos ajudando a pensar que sim, existe um monte de planetas no Universo, e provavelmente alguns muito similares à Terra – e podemos ousar pensar que, mesmo que não tenhamos encontrado vida neles ainda, pode haver seres vivos nesses lugares. E quem sabe se esses seres não estão encarando os mesmos problemas que nós? 

Agora mesmo, com as mudanças climáticas que estamos induzindo e com todas as implicações que vêm com elas, estamos mudando a habitabilidade do nosso próprio planeta a ponto de nos prejudicar. Estamos tornando nosso planeta um lugar menos confortável e menos habitável para nós mesmos. E penso que essa revolução Copernicana de encontrar outros planetas além do nosso sistema solar pode nos ajudar a enxergar as coisas de uma outra forma – pensando que talvez não sejamos os únicos a lidar com estas questões no Universo. Assim a situação fica menos dramática e conseguimos pensar que dá para fazer algo para lidar com isso. 

E então esperamos que as gerações futuras farão isso por nós porque falhamos nessa missão.

É bom colocar esperança nas gerações futuras, sim – mas na nossa geração também! Acho que a maior lição que tive com as oportunidades que me foram dadas por fazer astronomia é que nós, como indivíduos, podemos fazer a diferença. Cada um de nós deveria fazer o que acha certo, mesmo sentindo às vezes que o problema não está nas nossas mãos – de alguma forma, ele está, sim. 

Ajuda pensar que somos parte de algo maior. Às vezes eu gosto de pensar sobre o nosso cérebro e sobre como há bilhões de neurônios nele e eles estão “atirando” em direções aleatórias, mas, como um todo, ainda assim conseguimos ter pensamentos coerentes – existem padrões na forma como esses neurônios se comportam em meio ao caos.

0

Quando o segundo sol chegar…

…ou um outro planeta presente no sistema solar

Se você estava vivo no Brasil nos últimos 15 anos, tenho certeza que você já ouviu a música Segundo Sol, composta por Nando Reis e imortalizada na voz da querida Cássia Eller (sempre viva em nossos corações). Esses dias eu estava ouvindo a explicação do próprio Nando sobre a letra dessa música e ele conta que uma amiga espiritualista acreditava na possibilidade de existir um segundo sol (que não seria necessariamente um sol, mas um astro) que teria uma influência na vida das pessoas quando estivesse próximo a orbita da Terra.

Para os mais céticos parece uma loucura. Mas essa teoria está totalmente incorreta? Nesse texto trato dos relatos históricos e aspectos científicos da descoberta de um outro planeta presente no sistema solar.

Nibiru

Nancy Lieder é uma moradora do estado de Wisconsin nos EUA que afirma que na sua infância foi contatada por entidades extraterrestres cinzentas chamadas Zetas, que implantaram um dispositivo de comunicação em seu cérebro e a informaram que um planeta chamado Nibiru, ou o “Planeta X”.

Nancy_Lieder_2

Nancy e seus amigos Zetas lá no painel do fundo

Segundo a descrição de Lieder, feita em 1995, o Planeta X teria cerca de quatro vezes o tamanho da Terra e estaria muito próximo da Terra no dia 27 de maio de 2003. Esse rolê todo faria com que a rotação terrestre ficasse completamente parada por cerca de 6 dias. Além disso, a aproximação de Nibiru iria desestabilizar os do pólos da Terra e gerar uma mudança de pólos, causada pela atração magnética entre o núcleo da Terra e do magnetismo que passa pelo planeta.

Eu, particularmente, acho essa história digna do Cabo Daciolo, não é mesmo? Com certeza a mudança dos polos da Terra é o que iria mudar eixo de tudo, virar o planeta de cabeça pra baixo (como se no universo tivesse parte de cima e parte de baixo) pra finalmente rolar a instalação da Ursal.

12218620

Olha aí o mapa de ponta cabeça claramente depois da inversão de polos de Nibiru

Mas Nancy não foi a única a acreditar na chegada de um planeta externo não, ouviu?

Em 2012, Rodney Gomes, um cientista do Observatório Nacional do Brasil, modelou as órbitas de 92 objetos do cinturão de Kuiper e descobriu que seis delas eram mais alongadas do que o esperado. Rodney concluiu que a explicação mais simples era a atração gravitacional de um planeta distante. Dois anos depois, os astrônomos Konstantin Batygin e Mike Brown também se depararam com a possibilidade de existência de outro planeta que faria parte do sistema solar (não é Plutão, ok?). Em 2016 eles publicaram o artigo “Evidence for a distant giant planet in the solar system” mostrando os cálculos que evidenciavam a existência do planeta, que seria realmente gigantesco.

Os cálculos orbitais sugeriram que, se existir, este planeta tem a massa cerca de nove vezes maior que a massa da Terra e sua órbita seria um caminho elíptico ao redor do Sol que dura cerca de 20 mil anos. A sua menor distância da Terra seria o equivalente a 200 vezes a distância Terra-Sol, ou 200 unidades astronômicas. Essa distância o colocaria muito além de Plutão, no reino dos corpos gelados conhecidos como o cinturão de Kuiper.

orbita

Em laranja, a órbita do Planeta 9

 Apesar das evidências a respeito da sua massa e da sua órbita, a localização do Planeta 9 ainda é desconhecida pois ele poderia estar em qualquer lugar de sua imensa orbita. No final do artigo os cientistas deixam claro que o propósito não era, de forma alguma, “perturbar” a ciência e sim mostrar as evidências encontradas em seus cálculos. Brown declarou: “Adoraria encontrá-lo, mas também ficaria feliz se outra pessoa o encontrasse. É por isso que estamos publicando este estudo. Esperamos que pessoas se inspirem e comecem a buscá-lo”.

                Na minha humilde opinião, se esse planeta vier, que venha logo.

o-padre-fabio-de-melo-esta-mais-cansado-que-a-luc-2-11515-1478717040-1_dblbig

Referências

  1. BATYGIN, Konstantin; BROWN, Michael E. Early dynamical evolution of the Solar System: Pinning down the initial conditions of the Nice model. The Astrophysical Journal, v. 716, n. 2, p. 1323, 2010.
  2. BATYGIN, Konstantin; BROWN, Michael E. Evidence for a distant giant planet in the solar system. The Astronomical Journal, v. 151, n. 2, p. 22, 2016.
  3. BRASSER, R. et al. An Oort cloud origin for the high-inclination, high-perihelion Centaurs. Monthly Notices of the Royal Astronomical Society, v. 420, n. 4, p. 3396-3402, 2012.
1

A Terra já foi plana?

Quando falamos do movimento dos terraplanistas não estamos falando de pessoas que trabalham na construção civil deixando áreas de terra muito íngremes mais planas para que a construção seja possível naquele local. Infelizmente. Quem dera. Ô vontade.

O movimento da Terra plana acredita que o nosso planeta, na verdade, não possuiu uma forma parecida com uma esfera e sim com um plano, como um grande disco de vinil ou um imenso biscoito Chocolícia e que, na verdade, a Lei da Gravidade e outras leis das física seriam inválidas.

Bom, parece apenas bem doido, não é? Para os fãs de Harry Potter, parece apenas uma teoria absurda que o Xenofílio Lovegood, pai da querida Luna Lovegood, publicou no Pasquim.

Aí você me diz “ué, qual o problema? Deixa as pessoas acreditarem no que elas querem”.

O problema é que esse movimento vem ganhando adeptos no mundo todo e realizando, inclusive, congressos sobre a “ciência” (??????) da Terra Plana. E no meio desse movimento, que além de tudo tem um profundo e perigoso viés religioso, existem pais de alunos que esperam que a Terra Plana faça parte do currículo escolar de seus filhos e não os estudos geográficos e físicos modernos. E esse tipo de movimento pode ficar tão grande quanto a movimentação de pais americanos que conseguiram o direito dos seus filhos aprenderem criacionismo na escola.

1

Para os terraplanistas, o planeta seria um disco e o céu, uma cúpula em formato circular | Ilustração: Raphael Salimena . Crédito: BBC

Um estudo feito em 2017, pela doutora em educação Hanny Angeles Gomide, com alunos de 6° ano do ensino fundamental da cidade de Uberlândia em Minas Gerais, mostrou que 38,8% dos estudantes acreditavam em uma ideia de Terra plana. Quando questionados sobre as razões por trás dessa crença, simplesmente responderam “porque eu acho que é assim”.

Vocês entenderam o perigo?

Mas, pra tirar o gosto de barata da boca, Hanny observou no artigo que:

Naquilo que se relaciona aos demais astros, os participantes possuem um consenso de que o Sol é redondo. Muitos atribuem tal forma ao astro, por ser esta a configuração com que ele se mostra no céu, como é o caso de Márcio, que diz que o astro rei “é redondo por que já viu… em casa de olhar para o céu”. Já Emília observou que o Sol é redondo, “porque já viu nos livros de Ciências e porque também ele é a maior estrela do Universo”.

A simples condição de observação do Sol, seja ao vivo ou em livros de ciência, muda completamente a percepção dos estudantes sobre o fato. Inclusive, os próprios terraplanistas garantem que o Sol e a Lua são esféricos.

Nós podemos olhar para o Sol, Lua e estrelas mas, infelizmente,  como estamos sobre a superfície terrestre, não podemos olhar pra Terra e ter 100% de certeza que ela é plana através de uma observação puramente ocular. Apesar de existirem MILHÕES de fotografias, vídeos, imagens de satélite, leis da física, músicas de sertanejo universitário etc. que mostram que a Terra é plana, o desconfiar é da natureza humana.

E como este é um ambiente de ciência e ambiente de ciência é ambiente de referência científica, venho trazer um dos últimos gritos da ciência em matéria de Terra Esférica.

O texto da tese da doutora em física Anna Miotello, fala sobre os discos protoplanetários, que são estruturas achatadas que giram ao redor de estrelas jovens e são feitas de gás e poeira. Estes são os locais onde os planetas, como a nossa própria Terra, são formados.

Ou seja: nossa Terra já foi plana. Já foi. Passado do verbo ser. Significa que não é mais. Já tem uns 5 bilhões de anos que não é mais. Mais tempo do que você ligou da última vez pra sua avó.

Neste estudo, Miotello explica que a formação de estrelas e planetas começa com a formação de estruturas filamentares dentro de nuvens moleculares gigantes. Dentro desses longos filamentos, tipicamente são criadas dezenas de fibras menores que eventualmente se fragmentam em núcleos densos. Estes núcleos vão se colapsar para formar uma ou mais estrelas. À medida que o colapso prossegue, forma-se uma estrutura em forma de disco rotativo, através da qual a matéria se acumula na protoestrela ou protoplaneta, como podemos ver na figura abaixo.

2

Esboço do processo de formação de estrelas e planetas de forma isolada. As classes evolutivas diferentes são esboçados de forma esquemática. [MIOTELLO, 2017]

A partir daí, uma série de eventos se desenrola e estes núcleos densos começam a atrair outras partículas e assim nascem os planetas e estrelas.

Então, meus queridos, apesar desse planeta já ter sido um grande biscoito (ou bolacha, como você preferir) hoje sabemos que não somos mais assim. E se alguém vier com essas ideias de Terra plana, você pega os seus dedinhos e faz assim pra pseudociência.

3

Referências

  1. GOMIDE, Hanny Angeles; LONGHINI, Marcos Daniel. MODELOS MENTAIS DE ESTUDANTES DOS ANOS INICIAIS DO ENSINO FUNDAMENTAL SOBRE O DIA E A NOITE: UM ESTUDO SOB DIFERENTES REFERENCIAIS. Revista Latino-Americana de Educação em Astronomia, n. 24, p. 45-68, 2017.
  1. MIOTELLO, Anna et al. The puzzle of protoplanetary disk masses. 2018. Tese de Doutorado.

 

0

O modelo de Ising e comportamento críticos: dos spins eletrônicos às escolhas nas eleições

OU da aplicação de memes do Choque de Cultura em um texto sobre ciência

Você sabe o que é spin eletrônico? Na mecânica quântica o termo spin eletrônico está ligado às orientações que o elétron podem apresentar. O spin está ligado ao vetor momento angular próprio de uma partícula.

Entendeu?

1

Não entendeu?

2

Então vem comigo e RODA O VETÊ, SIMONE.

Bom, imagina o elétron. Ele é uma partícula muito pequena, tão pequena que a gente fala que em comparação ao átomo (que já é muito pequeno) o tamanho dele é desprezível. Muito pequeno mesmo, tão pequeno que era menor que o short curtíssimo, extremamente provocante que o Renan usou porém não recebeu nenhum olhar. Mas a gente sabe que o elétron se movimenta em torno do átomo e precisa representar esse movimento de alguma forma, não precisa? A forma mais interessante de representar essa situação toda é através de um vetor (que é representado por uma seta) já que um vetor tem módulo, direção e sentido definidos. O bacana de usar um vetor nessa representação é que eles possuem sentido físico e matemático. Então é possível fazer contas para representar matematicamente o seu comportamento. Legal, não é?

Aí entra o Ising.

3

Ernest Ising e sua fantástica esposa Johanna Annette Ehmer Ising durante um acampamento de verão

Ernest Ising (1900-1998) foi um físico alemão que teve uma vida muito tranquila e escreveu o modelo conhecido como Modelo de Ising, recebeu muita pompa e muito confete a vida inteira e morreu com 98 anos, rodeados por seus 4 filhos, 14 netos e 2 cachorros: Ponzo e Lila. Bacana, não é?

4

A vida de Ising foi muito instável e um pouco triste também, gente.

Aviso: esse texto agora vai tomar um ar bastante sério.

Ele foi um rapaz muito inteligente e bastante precoce, nasceu em 10 de maio de 1900 na cidade de Colônia, na Alemanha. Sua mãe era Thekla Ising Lowe Nee e seu pai era Gustav Ising, a família trabalhava no comércio. Aos 2 anos Ising se mudou para a cidade de Bochum onde Ising passou a infância e iniciou os estudos. Em 1919, quando completou 19 anos, nosso protagonista iniciou os estudos na Universidade de Göttingen onde estudou física e matemática. Os anos de 1922 a 1930 foram dedicados aos estudos de pós-graduação de Ising e também à sua vida pessoal, já que em 1930 ele se casou com Johanna e se tornou “studienassessor” (o que seria equivalente ao título de professor de ensino superior nos anos iniciais da profissão, antes da aprovação em estágio probatório) em uma respeitada instituição Alemã.

Queria ressaltar uma coisa, Johanna também era acadêmica. Ela estudou economia na Universidade Frederick William em Berlim. Em 1926, Ising escreveu uma tese sobre “O problema do desemprego na Inglaterra depois de 1920 e recebeu seu diploma de doutorado”

Mas o ano de 1933 chega e traz a ascensão de Hitler ao poder na Alemanha. E um detalhe que não deveria fazer diferença alguma e que eu não contei ainda sobre Ising: ele era judeu.

Ising (assim como quase todo trabalhador judeu) foi demitido e ficou por um tempo em trabalhos informais até se fixar, posteriormente, em uma pequena sala de aula. No entanto, no fim de 1938 a escola onde Ising trabalhava foi totalmente devastada pois era parte do “programa de governo” que planejava expulsar e extinguir o povo judeu da Alemanha.

No dia 27 de janeiro de 1939, Ising foi interrogado por muitas horas depois que ele foi levado pela Gestapo (Existe divergência entre os biógrafos se Ising sofreu ou não tortura física neste interrogatório e  na “minha opinião pessoal” eu acredito que sofreu sim). Ising e sua esposa se veem, então, obrigados a deixar o país e se mudam para Luxemburgo, onde realizam trabalhos pesados para garantir sua subsistência. No ano de 1947, finalmente, Ising e Johanna se mudam para os EUA onde conseguem retomar suas carreiras acadêmicas como professores universitários.

Em meio a esses anos de estudo voltados à sua pós-graduação, Ising escreveu seu modelo que tratava dos comportamentos críticos dos spins eletrônicos, chamado contemporaneamente de modelo de Ising. Ising estava no doutorado e seu orientador, Wilhelm Lenz, estava estudando fenômenos ligados ao magnetismo em alguns materiais. Ising propôs um modelo onde os spins são definidos como variáveis discretas que podem assumir o valor de +1 ou -1. A interação entre os spins sempre acontece em pares e a energia possui um valor quando os dois spins são iguais e outro valor quando os spins da interação são diferentes. Algo que pode ser mostrado como:

5

Se nós considerarmos um conjunto grande de spins que estão interagindo sob a ação de acontecimentos comuns a toda a população de spins, existe uma alteração importante no efeito da coletividade quando o local onde os spins estão sofre um aumento de temperatura. O nome disso é perda do fenômeno de histerese, que é justamente essa capacidade de agir como um agrupamento coletivo que tem suas propriedades dependentes dos fenômenos aplicados anteriormente ao sistema.

Um estudo de 2017 de Juan Carrasquilla e Roger G. Melko mostrou que arquiteturas modernas de aprendizado de máquina, como redes neurais totalmente conectadas, podem identificar fases e transições de fase que seguem o modelo de Ising.

Mas quando lemos a frase “existe uma alteração importante no efeito da coletividade quando o local onde os spins estão sofre um aumento de temperatura” a gente logo pega a referência, não é? Dando um salto (enorme) do micro pro macro, vemos que as populações também se comportam dessa forma.

6

Inclusive, outro estudo importante, também de 2017, da equipe do pesquisador Pinkoviezky mostrou algo ainda mais surpreendente: que a tomada de decisão coletiva também pode ser explicada pelo modelo de Ising.

Bom, sabemos que a tomada de decisão coletiva crucial para grupos de diversos animais, inclusive dos humanos. Uma forma de pensar, simplificando esse fenômeno, é um cenário de dois subgrupos que possuem direções de movimento preferidas conflitantes. Direita e esquerda, por exemplo, rs. Quanto mais coeso o grupo, de forma mais unitária ele conduz o movimento para um compromisso ou para um dos alvos preferidos. O estudo mostrou também que o movimento do grupo muda de forma dependente do tamanho em altas temperaturas (que seriam situações de grande perturbação, comparados no trabalho com a desinfomação). Dessa forma os cientistas perceberam a existência de uma dinâmica geral muito semelhante com o papel da temperatura sendo medida e comparada pelo inverso do número de indivíduos desinformados.

A equipe de Pinkoviezky publicou um estudo em 2018 aplicando o modelo de Ising a tomada de decisão do indivíduo, baseada em seu comportamento cerebral. Citando os autores, em livre tradução:

“A velocidade instantânea do grupo desempenha o papel da taxa de disparo dos neurônios enquanto a posição do grupo é a taxa de disparo integrada.

Podemos, portanto, propor que os tamanhos dos grupos neuronais e seus níveis de ruído intrínseco possam ser otimizados em redes que controlam os processos de tomada de decisão. Essa analogia pode ser mais explorada no futuro.”

O grupo pretende expandir o modelo futuramente incluindo situações como transformar em variáveis a força das situações sociais dependente da história do indivíduo e, também, dar a cada indivíduo mais de duas opções.

Dessa forma observamos que modelos usados para descrever comportamentos de partículas também podem ser aplicados ao estudo de populações. Observamos também que é possível sim usar memes do Renan, nosso guerreiro, para tornar mais leve um texto sobre aplicações de estudos físico-químicos.

De forma geral:

7

Referências:

ISING, Ernst. Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik, v. 31, n. 1, p. 253-258, 1925.

SANTOS, Murilo Lacerda. Simulação de monte carlo no modelo de Ising na rede quadrada. 2014. Tese de Doutorado. Dissertação (mestrado em física)–Universidade Federal de Minas Gerais. UFMG.

PINKOVIEZKY, Itai; GOV, Nir; COUZIN, Iain. Ising model for collective decision making during group motion. In: APS March Meeting Abstracts 2017.

CARRASQUILLA, Juan; MELKO, Roger G. Machine learning phases of matter. Nature Physics, v. 13, n. 5, p. 431, 2017.

PINKOVIEZKY, Itai; COUZIN, Iain D.; GOV, Nir S. Collective conflict resolution in groups on the move. Physical Review E, v. 97, n. 3, p. 032304, 2018.

1

Alquimia do universo: como produzir elementos químicos – Parte I

No artigo anterior, falamos sobre a observação da colisão de estrelas de nêutrons GW170817 e como graças à ela cientistas confirmaram a origem e abundância de 54 elementos químicos. Sim! A gente não tinha certeza de como foram produzidos muitos dos elementos que encontramos aqui na Terra, como o ouro, a prata e a platina. Imaginávamos — quer dizer, tínhamos as teorias — mas a prova mesmo chegou depois de 17 de agosto de 2017.

Dos 118 elementos químicos que conhecemos 24 são produzidos artificialmente em grandes laboratórios e 94 são produzidos naturalmente. E por natureza aqui nós não estamos falando do nosso pequeno planetinha. Estamos falando de estrelas, da morte de estrelas, da colisão entre estrelas, de fissão de raios cósmicos e do início do universo!

Nucleossíntese é o processo de sintetizar elementos químicos, ou seja, “colar” próton com próton e próton com nêutron, e em quantidades suficientes para “povoar” todo o cosmos com elementos químicos. E esse será o tema desta série de artigos sobre “Alquimia do universo: como produzir elementos químicos”.


Figura 1: Imagem em raios-X da supernova Cassiopeia A mostra como alguns elementos pesados são produzidos durante a explosão de estrelas massivas (supernova): silício (em vermelho), sulfúreo (amarelo), cálcio (verde) e ferro (roxo). As supernovas são uns dos eventos mais importantes na produção de elementos químicos. Créditos: NASA/CXC/SAO

Para preparar o terreno, alguns comentários sobre as escalas vamos usar para falar nesses eventos.

Kelvin
Indicamos a temperatura em Kelvin (K), escala absoluta de temperatura.
Só para ter uma ideia:

  • 0 K é o zero absoluto, equivalente a negativos 273,15 graus Celsius!
  • a temperatura do universo hoje é aproximadamente 2,7 K.
  • a temperatura ambiente de 20 graus Celsius é equivalente a 293 K.

Elétron-volts
É comum usar elétron-volts (eV) para falar sobre escala de energia, principalmente quando falamos em escalas de energia para acelerar partículas. Por definição, 1 eV é a energia cinética (energia convertida em movimento) que 1 elétron ganha quando é acelerado por uma diferença de potencial elétrico de 1 Volt no vácuo.
Só pra dar uma ideia:

  • a tomada da sua casa tem uma diferença de potencial de 110 Volts para acelerar milhares de elétrons presentes nos fios de cobre da sua instalação elétrica.
  • no CERN, o acelerador de partículas mais importante do mundo, cientistas atingiram o recorde de 13 TeV (1012 eV) numa colisão entre dois feixes de partículas. Ou seja, eles produziram energia suficiente para acelerar 13 trilhões de elétrons com uma diferença de potencial elétrico de 1 Volt no vácuo!

A escala de energia da nucleossíntese do Big Bang, evento que vamos falar a seguir, é de milhares de elétron-volts, 1 keV a 100 keV (103 eV) e a temperatura entre milhões e bilhões de Kelvins!

Figura 2: Tabela periódica com elementos produzidos na natureza e legenda representando os eventos que os produzem. Em azul, nucleossíntese do Big Bang; em verde, a morte de estrelas de baixa massa; em rosa, fissão de raios cósmicos; em dourado, explosão de estrelas massivas; em roxo, colisão de estrelas de nêutrons; e em cinza, explosão de anãs brancas. Créditos: Wikipedia/Jennifer Johnson (OSU).

 

Evento: Nucleossíntese do Big Bang

Quando aconteceu: nos primeiros 3 minutos de existência do universo, há quase 14 bilhões de anos atrás. E, olha, já tinha acontecido muita coisa nesses 3 minutos: inflação, surgimento dos quarks, depois dos hádrons (prótons e nêutrons são bárions, tipos de hádron). Depois os neutrinos apareceram. Depois léptons, entre eles os elétrons. E, depois de tudo isso, a nucleossíntese aconteceu.

O que é: a nucleossíntese confinou prótons e nêutrons juntos, formando os primeiros núcleos atômicos.

O que foi produzido: Estima-se que o hidrogênio e o hélio constituem, mais ou menos, 74% e 24%, respectivamente, de toda a matéria (bariônica) do universo! E a maior parte do hidrogênio e hélio-4 encontrados no universo foram produzidos durante a nucleossíntese. Assim como pequenas quantidades de deutério (hidrogênio-2) , hélio-3 e lítio-7. Deutério, hélio-3, hélio-4 e lítio-7 são isótopos. (No fim do artigo você encontra uma pequena nota sobre isótopos.)

Escala de energia: 109 K a 107 K (100 keV a 1 keV).

Em quanto tempo produziu: uns 20 minutos.

Com que frequência ocorre: o Big Bang é por definição o evento que deu origem a tudo que existe, então ele aconteceu uma única vez. Porém nas teorias de universo cíclico o universo teria tido vários inícios, ou seja, ele se contrai e expande a cada dezenas (centenas?) de bilhões de anos. Mesmo que seja o caso, a cada contração tudo o que existe seria destruído durante o colapso. Então, se o universo for cíclico, ele necessariamente só tem 1 (um) evento de Big Bang por ciclo.

Nos vemos no próximo artigo para falar sobre os elementos produzidos durante a vida e morte de estrelas.
Até lá! 😀


Nota
Isótopos de um elemento químico têm o mesmo número de prótons e diferentes números de nêutrons. Hélio-3 e hélio-4 são isótopos estáveis do hélio; deutério é um dos isótopos instáveis do hidrogênio; e o lítio-7 é o tipo mais comum de lítio encontrado na natureza e é um dos seus dois isótopos estáveis, o outro é o lítio-6.


 

1

Nos braços da melatonina

 

Olha, pela primeira vez na história dos meus textos nesse blog, eu vou usar um adjetivo bastante controverso, mas não conheço outra forma de expressar meus sentimentos:

Dormir é top.

É topíssimo, é topperson, é top da alegria. Dormir é tão, mas tão top que várias culturas ao longo do tempo criaram divindades dentro de suas mitologias que seriam responsáveis por essa área das nossas vidas.

Os gregos atribuíram o sono ao deus Hipnos (e se você é velho de guerra lembra também que ele era brother do Hades em Cavaleiros do Zodíaco). Ele era um deus tão poderoso que foi considerado um daemons: um dos deuses que interferem no espírito dos mortais. Ele foi pai de Morfeu – deus dos sonhos bons, Ícelo – deus dos pesadelos (quando você sonha que voltou com seu ex, aquele embuste, pode colocar a culpa no Ícelo), Fântaso – criador dos objetos inanimados, monstros, quimeras e devaneios que aparecem nos sonhos e ficam na memória e Fantasia – única filha de Hipnos, gêmea de Fântaso, deusa dos delírios e fantasia.

 

Hipnos e seu filho Morfeu. Não, pera

Mas além de ser nota 10/10 dormir é um processo natural essencial para a manutenção saudável do nosso corpo. Mas por que então dormir é tão importante, tão delicinha, tão mara?

Por que está anoitecendo se eu não vou beijar seus lábios quando você se for?

Imagina só a cena. Uns muitos mil anos atrás a sua ta(ta)45852ravó que era uma mulher das cavernas tinha acabado de lutar com um bicho grande pra proteger a sua ta(ta)45851ravó, que ainda era bebê, bateu uma lombeira (no meu país Minas Gerais, quando bate um cansaço forte a gente chama de lombeira) e ela precisou dormir.

Aí você imagina essa situação, amiga. Imagina os omi daquela época, amiga. Que treta. Que vida dura. E vem comigo.

Dormir não era esse ato delicioso com lençol macio e pijama da Sonharte, não. Dormir era UM PERIGO. O indivíduo passava (e ainda passa, né?) horas INCONSCIENTE, totalmente vulnerável a ataques de predadores, sem condição de proteger a si mesmo, seus descendentes, sua comida e seus objetos. Mas ainda assim precisava dormir. Mas por que, gente? Que maldade.

Assim, pra falar a verdade mesmo ninguém bateu o martelo pra dar certeza. O que a gente sabe é que dormir é essencial para de alguma forma recuperar nosso corpo, inclusive o nosso cérebro.

Um dos processos químicos que acontecem durante o nosso sono é a quebra do ácido lático que produzimos ao longo do dia.

Ciclo de Cori

Seu fígado dando conta do ácido lático produzido ao longo do dia (Créditos da imagem: Mundo da Bioquímica)

Esse ácido é uma substância produzida normalmente pelo nosso corpo ao longo do dia. Se você assim como eu é crossfiteira, conhece bem a fadiga, as dores musculares e as cãimbras sentidas após um esforço físico intenso. Isso é o resultado da acidificação provocada pelo ácido láctico no músculo (abaixando o pH até 6,5). O pKa do ácido láctico é de cerca de 4, o que faz com que o pH das células (≈ 7) ou do plasma (≈ 7,4) provoque a dissociação do ácido láctico em lactato.

acido latico e lactato

Ácido lático e lactato: mais que amigos FRIENDS

Este acúmulo de H+ interfere na capacidade de contração das fibras musculares e vai também invadir a fenda sináptica (causando aquela dor que faz a gente querer nunca mais passar nem na porta da academia).

Mas dormir não é só pra evitar a dor, também tem seus prazeres e começam antes mesmo do sono propriamente dito.

Na janela lateral do quarto de dormir

Antes mesmo de começar a dormir, nosso corpo já começa a se preparar para esse momento de honra e glória. Um dos processos é a produção de melatonina. Essa princesa que é a verdadeira responsável pelas nossas noites de descanso.

1200px-Melatonin2.svg

– Deixa eu te fazer sonhar, sua linda

A melatonina (N-acetil-5-metoxitriptamina) é um hormônio natural, presente no organismo humano e é sintetizada a partir do triptofano. É derivada da serotonina após duas transformações enzimáticas que a acetilam e substituem o grupamento hidroxila pelo metóxi.

biosintesis-melatonina

Síntese de melatonina a partir do Triptofano (Creditos da imagem: http://nutracosmeceuticos.blogspot.com.br/2012/05/la-psiconeuroinmunoendocrinologia-y-la.html)

A melatonina é produzida pela glândula pineal e não está sujeita a mecanismos de retroalimentação. Assim a sua concentração plasmática não regula sua própria produção. Pra ficar ainda mais fácil de entender: não é porque você está com altas quantidades de melatonina no corpo que ele vai parar de produzir mais melatonina. Não vai. Ele vai continuar produzindo até você criar juízo e ir dormir.

Nunca mais eu vou dormir, nunca mais eu vou dormir

Que dormir é um negócio maravilhoso, eu já provei. No entanto tem gente que não consegue dormir direito, o que é muito triste.

A FAPESP divulgou em 2008 uma pesquisa publicada na edição do Journal Sleep que trazia a primeira demonstração de uma anormalidade neuroquímica específica em adultos com insônia primária. O estudo identificou uma redução de 30% nos níveis de ácido gama-aminobutírico, neurotransmissor que induz a inibição do sistema nervoso central, em indivíduos que sofrem de insônia primária há mais de seis meses.

Esse ácido gama-aminobutírico é esse galã aí embaixo, carinhosamente apelidado de GABA pelos parças:

GABA

– Não quero me GABAr, mas sem mim você nem dorme, gatinha

Uma pesquisa linda & maravilhosa realizada na universidade de Boston em 2007 mostrou que uma hora de yoga por dia é capaz de aumentar de forma significativa os níveis de GABA no organismo humano, diminuindo o stress e os transtornos do sono.

Eu sei que durante nossos anos de estudante, acabamos dormindo muito pouco. Mas o sono é essencial para o seu cérebro continuar funcionando, então TEM QUE DORMIR. Tome um banho quentinho, coloque um incenso pra perfumar seu quarto, apague as luzes e deixe-se, literalmente, a química rolar.

 

 

Referências

  1. SIEGEL, J.; HUITRON-RESENDIZ, Salvador; HYPNOS, Club. The evolution of sleep. Encyclopedia of sleep, v. 1, 2013.
  2. FLEMONS, W. W. et al. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep, v. 22, n. 5, p. 667-689, 1999.
  3. MAQUET, Pierre. The role of sleep in learning and memory. Science, v. 294, n. 5544, p. 1048-1052, 2001.
  4. CAJOCHEN, C.; KRÄUCHI, K.; WIRZ‐JUSTICE, A. Role of melatonin in the regulation of human circadian rhythms and sleep. Journal of neuroendocrinology, v. 15, n. 4, p. 432-437, 2003.
  5. BRYANT, Penelope A.; TRINDER, John; CURTIS, Nigel. Sick and tired: does sleep have a vital role in the immune system?. Nature Reviews Immunology, v. 4, n. 6, p. 457-468, 2004.
  6. IRWIN, Michael R.; OPP, Mark R. Sleep health: reciprocal regulation of sleep and innate immunity. Neuropsychopharmacology, 2016.

5

Origem da vida e os desentendimentos entre Ciência e Religião

Você provavelmente já se perguntou várias vezes como a vida começou. Esse é um questionamento que muitas pessoas possuem e causa um grande debate entre ciência e religião.

Ciência e religião utilizam abordagens distintas para explicar a realidade. Para nós, cientistas, a forma como tentamos entender o mundo natural é aplicando o método científico. Isso quer dizer que, a partir de experimentação e observação dos eventos naturais ao longo dos anos, nós formulamos hipóteses que podem ser confirmadas ou refutadas.

Sabemos que o Homo sapiens é uma espécie bem curiosa e essa curiosidade nos ajudou a sobreviver ao longo dos anos, pois modificamos o nosso entorno como nenhuma outra espécie, utilizando a nossa capacidade de observação do ambiente e da experimentação. Com o passar do tempo, melhoramos o nosso entendimento sobre o mundo natural e aperfeiçoamos as formas de transmitir esse conhecimento entre as gerações. Assim, nós sobrevivemos e nos multiplicamos. E como multiplicamos! Somos 7,5 bilhões e continuamos contando. Por conseguinte, com a formação das diversas sociedades em diferentes locais do planeta Terra, utilizamos a nossa observação e imaginação para responder as nossas curiosidades e dúvidas mais basais, como: qual é a nossa origem? Qual é a origem da vida?

Penso que a ideia por trás dessas perguntas talvez esteja associada ao fato de que, sabendo a origem, talvez encontremos um motivo para a nossa existência. Assim, centenas de religiões e crenças oferecem as respostas para esses anseios da nossa espécie. Seguindo essa lógica, nós sempre praticamos ciência. Nós sobrevivemos por conta da ciência e, ao mesmo tempo, utilizamos a nossa abstração do mundo natural para criar religiões e, em muitas delas, obter o conforto para as nossas perguntas. Porém, a ciência aplicada à sobrevivência – como práticas agrícolas, contar o tempo, cozinhar os alimentos e explorar o mundo natural – sempre foi permitida. Mas à medida que a nossa curiosidade foi aumentando e o caminho da ciência começou a cruzar com o da religião historicamente estabelecida, as coisas mudaram de configuração.

Com o passar dos anos, religião e moral se tornaram um bloco único e passaram a atuar como organizadores sociais. Assim, a expansão do conhecimento científico se tornou algo considerado perigoso, pois as respostas que a experimentação científica nos trouxe começaram a ameaçar interesses religiosos e, com isso, abalaram também os fundamentos de uma ordem social, majoritariamente religiosa. Por outro lado, como o progresso científico sempre trouxe mais conforto para o ser humano, a ciência também era vista como algo bom, desde que estivesse aprisionada em uma caixinha de só prover produtos. As outras áreas do conhecimento como o campo social, político e moral sempre foram reservadas, e continuam sendo nos dias atuais, obrigatoriamente à religião.

Por outro lado nós, cientistas, enfrentamos os bloqueios ao longo dos séculos para expandir o nosso conhecimento sobre o mundo. Com isso, mais cedo ou mais tarde, chegamos nas fronteiras da nossa caixinha científica, sendo que, agora, temos respostas para muitas dúvidas que antes eram atribuídas a uma criação divina. Para começar a citar essas descobertas, é impossível não lembrar de Darwin que presenteou a humanidade com o livro “A origem das espécies”. Nos dias de hoje, até o representante de uma das maiores religiões mundiais (o papa) de alguma forma aceita a ideia da evolução. A outra novidade é que agora estamos muito próximos de outra descoberta: a explicação sobre a origem da vida. Os cientistas estão a cada ano mais empenhados em solucionar essa questão e possuem alguns experimentos que comprovam esses dados. Vamos lá!

Atualmente, os fósseis mais antigos conhecidos têm cerca de 3,5 bilhões de anos, 14 vezes a idade dos primeiros dinossauros [1]. Porém, em agosto de 2016, pesquisadores descobriram registros fósseis na Austrália de uma comunidade de microorganismos, chamados de estromatólitos [2], que datam 3,7 bilhões de anos. Outro estudo ainda mais recente, em março de 2017, mostra evidências de vida na Terra há aproximadamente 4,28 bilhões de anos. Lembrando que a Terra em si não é muito mais antiga: os cálculos mais aceitos revelam que o nosso planeta foi formado há 4,5 bilhões de anos, isso quer dizer que a vida na Terra teve origem muito cedo.

Stroms (2)
Estromatólitos (Fonte: Nutman e colaboradores, Nature).

As descobertas não param por aí. A curiosidade científica nos fez olhar para o mundo através de lentes de aumento, e com a criação do primeiro microscópio no século XVII nós descobrimos algo fantástico: as células! Não demorou muito para a gente entender que todos os seres vivos eram formados por células (nota 1). Além disso, diversos organismos que vivem nos mais diferentes lugares do planeta possuem apenas uma única célula, como por exemplo as bactérias. Ao observar a atual árvore da vida, podemos notar que quase todos os ramos principais são compostos por esses seres unicelulares.

arvore da vida (hug, Banfield - Nature) (2)
Árvore da vida (Fonte: Hug, Banfield e colaboradores, Nature Microbiology).

Enxergar essas unidades celulares nos fez pensar sobre como as células podem ter se formado e o que existe dentro de uma única célula. O desenvolvimento de tecnologia nos permitiu identificar que as células possuem internamente diferentes organelas, que são majoritariamente estruturas formadas por proteínas, e estas, utilizando uma explicação bem básica, são resultado de ligações entre diferentes elementos químicos.

Assim, após esta descoberta, a saga para entender como os elementos químicos presentes na Terra inicialmente se transformaram em compostos orgânicos começou! A primeira hipótese, que é muito conhecida, fala sobre uma sopa primordial de elementos químicos. Essa proposta é proveniente da junção de ideias de dois cientistas, o soviético Alexander Oparin e o biólogo inglês John B.S. Haldane. A ideia de Oparin-Haldane basicamente é que os oceanos primitivos eram como uma sopa quente, que possibilitaria a combinação de diferentes compostos químicos e assim, espontaneamente, o aparecimento dos primeiros organismos vivos [3]. A vida então não precisaria de nada divino para ser explicada.

Essa hipótese era instigante e foi até mesmo encontrada em uma correspondência de Darwin anos antes de ser pensada por Oparin e Haldane, na qual ele dizia:

“Mas, se (Oh, mas que grande “se”) pudéssemos conceber em algum lago pequeno e quente com todos os tipos de amônia e sais fosfóricos com a presença de luz, calor, eletricidade assim um composto protéico foi quimicamente formado, pronto para passar por mudanças mais complexas…”

Porém, o problema para todos esses questionamentos era conseguir realizar um experimento para testar essa hipótese. Nesse momento, surgem outros dois cientistas nesta história, Harold Urey e Stanley Miller. Urey, ganhador de um prêmio Nobel, explicou em uma palestra que a atmosfera inicial era praticamente desprovida de oxigênio, e que isso seria o suporte para a teoria da sopa primordial. Miller, que estava na plateia, propôs para o professor testar essa ideia, e assim o fez em 1952. Ele conectou por meio de frascos de vidro quatro produtos químicos (água fervente, gás hidrogênio, amônia e metano) e submeteu esses gases à choques elétricos, para simular relâmpagos.

miller- urey experiment
Experimento de Miller e Urey (Fonte: Francis Leroy, Biocosmos/Science Photo Library).

Miller descreveu que após o primeiro dia a água estava um pouco rosa e no final da semana turva e avermelhada. Ao analisar seu conteúdo, ele encontrou dois aminoácidos formados: glicina e alanina. E olha que incrível, as proteínas, que são basicamente a constituição dos seres vivos, são formadas por uma cadeia de nada mais, nada menos do que aminoácidos! Os resultados foram publicados na revista Science em 1953 [4].

Com o passar dos anos, outros cientistas começaram a encontrar maneiras de criar moléculas biológicas simples a partir de soluções químicas, e uma explicação para o mistério sobre a origem da vida parecia próxima. Porém, ao mesmo tempo ficou claro que a vida era mais complicada do que se pensava. Células vivas possuem um modo de funcionamento próprio, não são apenas uma bolha com produtos químicos dentro, e uma das características que as tornam especiais é a capacidade de se dividirem.

Contribuições para o entendimento dessa incrível maquinaria celular foram impulsionadas com o descobrimento do DNA em 1953 [5]. Na verdade, proteínas são estruturas quimicamente complexas, e entender o processo de conversão de uma simples molécula de DNA em RNA, e esse RNA posteriormente em proteínas, trouxe várias outras ideias para explicar a origem da vida. Aqui no blog existem dois textos muito bons sobre esse assunto, o primeiro trata da descoberta do DNA e o outro sobre este processo de conversão.

O processo DNA-RNA-proteína ocorre em todas as células existentes. Assim, explicações sobre a origem da vida devem basicamente mostrar como essa “trindade biológica” começou a funcionar. Sobre esse tema, você deve estar pensando agora. “- Isso é muito complicado!” E, na verdade, é sim. Mas os cientistas olharam para o processo e pensaram que, talvez, se fosse possível encontrar um composto químico orgânico que conseguisse reproduzir-se por si mesmo, esse poderia ser a chave para o questionamento de como a vida surgiu. E assim surgiu a hipótese do “mundo de RNA”.

Esta hipótese foi proposta por Walter Gilbert em 1986 [6]. Ele sugeriu que moléculas de RNA poderiam realizar atividades catalíticas necessárias para se auto montar a partir de uma sopa de nucleotídeos. Ao cortar e colar diferentes pedaços, as moléculas de RNA poderiam criar sequências cada vez mais úteis, e isso tudo passaria por aperfeiçoamento até chegar a versão de vida que temos hoje. A ideia ganhou um suporte muito grande em 2000, quando outro cientista, Thomas Steitz, ao detalhar a imagem dos ribossomos, descobriu que o RNA era o centro do funcionamento desta organela [7]. Ribossomos são tão antigos e fundamentais para a formação da vida, que fez com que a hipótese do mundo de RNA parecesse possível. Porém, os problemas dessa hipótese são que, primeiro, até os dias atuais ainda não foi encontrado um RNA que pudesse se auto-replicar inteiramente. Segundo, será que a estrutura química do RNA poderia ser formada nas condições da Terra antigamente?

Assim, outro time de cientistas propôs uma nova teoria de que a vida tenha surgido como um mecanismo para aproveitar energia, ou melhor, ter um metabolismo. Afinal, ao observar o mundo natural a ordem dos acontecimentos é nascer, crescer e se reproduzir, assim, para alguns pesquisadores, a energia para crescer seria primordial e ainda mais importante do que a reprodução. Seguindo essa lógica, os cientistas buscaram por locais capazes de prover energia para a existência de uma célula e com composição química similar à que observamos nos organismos atualmente e, no fundo do Oceano Pacífico, pesquisadores liderados por Jack Corliss descobriram as fontes hidrotermais. A ideia é que essas fontes hidrotermais pudessem criar complexas misturas de produtos químicos e que cada abertura funcionasse como uma espécie de bomba de sopa primordial [8].

hidrptermal vents
Fontes hidrotermais e a formação de células (Fonte: Richard Bizley/Science Photo Library).

O fluxo de água, aliado ao calor e a pressão, faria com que compostos orgânicos simples, como os elementos presentes no ambiente, se tornassem mais complexos, como aminoácidos, nucleotídeos e açúcares, que posteriormente se ligariam em cadeias – formando carboidratos, proteínas e o próprio DNA. Então, a medida que a água perdesse calor, esses compostos teriam se juntado e formado as primeiras células simples. Aliando essa hipótese à outras descobertas de fontes hidrotermais alcalinas no oceano e, unindo com toda a tecnologia que temos atualmente, pesquisadores publicaram em 2016 [9] a ideia de um ancestral comum universal entre todos os organismos da Terra, denominado LUCA (Last Universal Common Ancestor), em português, último ancestral comum universal.

Para investigar essa possibilidade, os pesquisadores analisaram 1.930 microorganismos modernos e identificaram 355 genes comuns. A ideia é que provavelmente esses 355 genes foram transmitidos, de geração em geração, remetendo a um único antepassado comum. Porém, o problema para esta hipótese é reproduzir em laboratório essa possibilidade. E o mais legal, um grupo está atualmente trabalhando na construção de um reator para reproduzir as condições de um ambiente prebiótico onde a vida poderia ter surgido [10] e, com isso, talvez teremos novidades nos próximos anos.

Além desses trabalhos, um terceiro grupo de pesquisadores apostou na hipótese de um “mundo de lipídeos” [11]. A ideia é que para existir uma célula, precisa existir proteção, precisa existir uma membrana. Assim, unindo essa ideia com o “Mundo de RNA”, os pesquisadores criaram em laboratório as protocélulas [12]. Essas protocélulas podem manter seus genes internamente enquanto absorvem moléculas úteis de fora, e ainda crescer, se dividir, e até mesmo competirem entre si. O RNA pode se replicar dentro dessas estruturas e elas conseguem “sobreviver” a temperaturas de até 100 °C.

Por fim, os cientistas pararam de pensar em teorias separadas e juntaram todas as ideias em uma única. Ao constatar a constituição química das células atuais, como a presença de potássio e fosfato, e além disso metais, que são necessários para o funcionamento de várias enzimas, os pesquisadores encontraram um cenário ideal para o surgimento da vida. A ideia com todas essas pistas é que a vida surgiu em lagoas de superfície em uma área geotérmica-ativa, com abundância de radiação ultravioleta do Sol. As protocélulas nesse ambiente poderiam ficar em zonas mais frias na maior parte do tempo, mas seguindo o fluxo da água teriam também ciclos de aquecimento que poderia auxiliar no processo de replicação do RNA. Além disso, haveriam correntes, conduzidas por essa diferença de temperatura no lago que poderiam ajudar a dividir as protocélulas [13].

Agora, será muito trabalho em laboratório para tentar provar esta nova hipótese. Mas finalmente estamos mais perto do que nunca de descobrir a verdade sobre a nossa origem. Em 1859 Darwin revolucionou o mundo com a verdade sobre a origem das espécies, apresentando dados tão claros que podem ser comprovados diariamente. Você consegue imaginar como o mundo irá reagir quando a verdadeira história da origem da vida for contada?

Agora que entendemos todo esse cenário de descobertas, fica difícil acreditar que toda essa complexidade de relações possa ser explicada por um evento que durou apenas sete dias, como é apresentado por muitas perspectivas teológicas. Por isso, apesar da importância cultural que as religiões têm para o desenvolvimento da sociedade e da própria humanidade, precisamos ser bem cautelosos quando se trata de utilizar suas perspectivas, principalmente para a criação de políticas públicas envolvendo ciência, educação e saúde.

Podemos avançar muito mais em nosso conhecimento e chegar a conclusões inimagináveis atualmente, mas as descobertas científicas necessitam de uma sociedade que apoie a ciência e entenda as contradições existentes no que hoje é tido como senso comum da própria sociedade.

Notas:

  1. Deixarei fora dessa discussão todas as conceituações teóricas sobre os vírus serem ou não organismos vivos.

Bibliografia utilizada:

  1. Allwood, A.C., Walter, M.R., Burch, I.W., Kamber, B.S. 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem-scale insights to early life on Earth. Precambrian Research. 158, 3-4, p. 198-227, 2007.
  2. Nutman, A.P., Bennet, V.C., Friend, C.R., Van Kranendonk, M.J., Chivas, A.R. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature. 537, p. 535-539, 2016.
  3. Oparin A.I. The origin of life. 29 p.
  4. Miller S.L. A Production of Amino Acids Under Possible Primitive Earth Conditions.  Science. 1953. 
  5. Watson J.D., Crick, F.H.C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature. 171, p. 737-738, 1953.  
  6. GIlbert. W. Origin of life: The RNA world. Nature. 319, 618, 1986.  
  7. Cech, T.R. The Ribosome is a Ribozyme. Science. 289, 5481, p. 878-879, 2000.
  8. Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., Herzen, R.P., Ballard, R.D., Green, K., Williams, D., Bainbridge, A., Crane, K., Andel, T.H. Submarine Thermal Sprirngs on the Galápagos Rift. Science. 203, 4385, p. 1073-1083, 1979.
  9. Weiss, M.C., Sousa, F.L., Mrnjavac, N., Neukirchn, S., Roettger, M., Nelson-Sathi, S., Martin, W. The physiology and habitat of the last universal common ancestor. Nature Microbiology. 16116, 2016.
  10. Herschy, B., Whicher, A.,  Camprubi, E., Watson, C., Dartnell, L., Ward, J., Evans, J.R.G., Lane, N. An Origin-of-Life Reactor to Simulate Alkaline Hydrothermal Vents. Journal of Molecular Evolution. 79, 5-6, p. 213–227, 2014.
  11. Segré, D., Ben-Eli, D., Deamer, D.W., Lancet, D. The lipid World. Origins of life and evolution of the biosphere. 31, 1–2, p. 119–145, 2001.
  12. Hanczyc, M.M., Fujikawa, S.M., Szostak., J.W. Experimental Models of Primitive Cellular Compartments: Encapsulation, Growth, and Division. Science. 302, 5645, p. 618-622, 2003.
  13. BBC earth (Michael Marshall). The secret of how life on earth began. 2016.