0

Quando o segundo sol chegar…

…ou um outro planeta presente no sistema solar

Se você estava vivo no Brasil nos últimos 15 anos, tenho certeza que você já ouviu a música Segundo Sol, composta por Nando Reis e imortalizada na voz da querida Cássia Eller (sempre viva em nossos corações). Esses dias eu estava ouvindo a explicação do próprio Nando sobre a letra dessa música e ele conta que uma amiga espiritualista acreditava na possibilidade de existir um segundo sol (que não seria necessariamente um sol, mas um astro) que teria uma influência na vida das pessoas quando estivesse próximo a orbita da Terra.

Para os mais céticos parece uma loucura. Mas essa teoria está totalmente incorreta? Nesse texto trato dos relatos históricos e aspectos científicos da descoberta de um outro planeta presente no sistema solar.

Nibiru

Nancy Lieder é uma moradora do estado de Wisconsin nos EUA que afirma que na sua infância foi contatada por entidades extraterrestres cinzentas chamadas Zetas, que implantaram um dispositivo de comunicação em seu cérebro e a informaram que um planeta chamado Nibiru, ou o “Planeta X”.

Nancy_Lieder_2

Nancy e seus amigos Zetas lá no painel do fundo

Segundo a descrição de Lieder, feita em 1995, o Planeta X teria cerca de quatro vezes o tamanho da Terra e estaria muito próximo da Terra no dia 27 de maio de 2003. Esse rolê todo faria com que a rotação terrestre ficasse completamente parada por cerca de 6 dias. Além disso, a aproximação de Nibiru iria desestabilizar os do pólos da Terra e gerar uma mudança de pólos, causada pela atração magnética entre o núcleo da Terra e do magnetismo que passa pelo planeta.

Eu, particularmente, acho essa história digna do Cabo Daciolo, não é mesmo? Com certeza a mudança dos polos da Terra é o que iria mudar eixo de tudo, virar o planeta de cabeça pra baixo (como se no universo tivesse parte de cima e parte de baixo) pra finalmente rolar a instalação da Ursal.

12218620

Olha aí o mapa de ponta cabeça claramente depois da inversão de polos de Nibiru

Mas Nancy não foi a única a acreditar na chegada de um planeta externo não, ouviu?

Em 2012, Rodney Gomes, um cientista do Observatório Nacional do Brasil, modelou as órbitas de 92 objetos do cinturão de Kuiper e descobriu que seis delas eram mais alongadas do que o esperado. Rodney concluiu que a explicação mais simples era a atração gravitacional de um planeta distante. Dois anos depois, os astrônomos Konstantin Batygin e Mike Brown também se depararam com a possibilidade de existência de outro planeta que faria parte do sistema solar (não é Plutão, ok?). Em 2016 eles publicaram o artigo “Evidence for a distant giant planet in the solar system” mostrando os cálculos que evidenciavam a existência do planeta, que seria realmente gigantesco.

Os cálculos orbitais sugeriram que, se existir, este planeta tem a massa cerca de nove vezes maior que a massa da Terra e sua órbita seria um caminho elíptico ao redor do Sol que dura cerca de 20 mil anos. A sua menor distância da Terra seria o equivalente a 200 vezes a distância Terra-Sol, ou 200 unidades astronômicas. Essa distância o colocaria muito além de Plutão, no reino dos corpos gelados conhecidos como o cinturão de Kuiper.

orbita

Em laranja, a órbita do Planeta 9

 Apesar das evidências a respeito da sua massa e da sua órbita, a localização do Planeta 9 ainda é desconhecida pois ele poderia estar em qualquer lugar de sua imensa orbita. No final do artigo os cientistas deixam claro que o propósito não era, de forma alguma, “perturbar” a ciência e sim mostrar as evidências encontradas em seus cálculos. Brown declarou: “Adoraria encontrá-lo, mas também ficaria feliz se outra pessoa o encontrasse. É por isso que estamos publicando este estudo. Esperamos que pessoas se inspirem e comecem a buscá-lo”.

                Na minha humilde opinião, se esse planeta vier, que venha logo.

o-padre-fabio-de-melo-esta-mais-cansado-que-a-luc-2-11515-1478717040-1_dblbig

Referências

  1. BATYGIN, Konstantin; BROWN, Michael E. Early dynamical evolution of the Solar System: Pinning down the initial conditions of the Nice model. The Astrophysical Journal, v. 716, n. 2, p. 1323, 2010.
  2. BATYGIN, Konstantin; BROWN, Michael E. Evidence for a distant giant planet in the solar system. The Astronomical Journal, v. 151, n. 2, p. 22, 2016.
  3. BRASSER, R. et al. An Oort cloud origin for the high-inclination, high-perihelion Centaurs. Monthly Notices of the Royal Astronomical Society, v. 420, n. 4, p. 3396-3402, 2012.
Anúncios
0

Ver, ouvir e sentir envolvem aprendizado e adaptação

Quando você olha para os dois quadros à esquerda na figura abaixo, a diferença entre eles é bem clara, certo? O de baixo tem o dobro da quantidade de pontos do de cima, no caso, dez pontos a mais. E quando você olha para os dois quadros à direita, fica tão evidente que a diferença de quantidade de pontos é também dez?

Figura 1 – Quanto menos pontinhos, mais fácil é identificar a diferença na sua quantidade (retirado de Wikimedia Commons, por MrPomidor, licença CC BY-SA 4.0).

Isso acontece porque a nossa percepção de quantidades, assim como nossas percepções de brilho, frequência e intensidade sonoras e outros fenômenos não são lineares, ou seja, o aumento na intensidade de um determinado estímulo não implica que sua percepção será proporcionalmente maior.

Nós formamos nossa noção de realidade e interagimos com o nosso ambiente e com as outras pessoas através dos nossos cinco sentidos, e todos eles estão sujeitos a essas relações não-lineares

Figura 2 – Não se preocupe, você não precisa aumentar o grau dos seus óculos.

A relação entre a diferença física entre estímulos e a diferença da forma a qual os percebemos é estudada pela psicofísica. Por abordar fenômenos físicos e sensações simultaneamente, a psicofísica é um ramo essencialmente multidisciplinar e é estudada por físicos, psicólogos e neurocientistas.

Muitas das nossas percepções de estímulos podem ser descritas pela Lei de Fechner, que é provavelmente a mais célebre equação na psicofísica.

Equação 1 – Lei de Fechner – p representa a percepção, S representa o estímulo, k é uma constante que depende do fenômeno e S0 é o estímulo mínimo necessário para que possamos percebê-lo. A relação entre o estímulo e a percepção é logarítmica (ln é um tipo de logaritmo chamado na matemática de logaritmo natural), e não linear.

Muitos destes fenômenos já são bem conhecidos, mas alguns ainda estão sendo investigados pelos cientistas. Saindo um pouco do campo dos estímulos que podem ser simplesmente aumentados ou diminuídos, ainda existem inúmeros tipos de informação que somos capazes de processar em nosso cérebro que vão muito além da mera “decodificação” dos estímulos físicos, e que envolvem níveis de cognição altamente sofisticados. É sabido que nosso cérebro é capaz de se adaptar a mudanças até mesmo estruturais nos órgãos sensoriais quando se trata de interpretar a informação que recebemos através de nossos sentidos.

Um clássico exemplo é o experimento dos austríacos Erismann e Kohler, realizado em 1950. Após alguns dias seguidos utilizando um óculos que deixa a imagem de ponta-cabeça, Kohler, que foi o voluntário do experimento, foi capaz de andar, tocar objetos e até mesmo andar de bicicleta como se nada estivesse acontecendo. Algumas das imagens podem ser vistas neste documentário.

Nosso cérebro também é capaz de se adaptar à mudanças no formato da nossa orelha. Os cientistas Régis Trapeau e Marc Schönwiesner demonstraram, após alterarem o formato das orelhas de participantes do estudo através do uso de moldes de silicone (o que a princípio afetou suas habilidades de distinguir de que direção os sons vinham), que após algum tempo de adaptação os voluntários re-aprenderam a interpretar a direcionalidade dos estímulos mesmo com a “nova orelha”.

Da mesma forma, a forma como seguramos objetos depende de estimativas que fazemos inconscientemente, baseados em informações sensoriais sobre eles, e conforme adquirimos experiência com um determinado objeto, refinamos nosso aprendizado sobre suas propriedades físicas, de forma a saber melhor qual a forma mais adequada de manuseá-lo.

Ainda há muito a ser investigado sobre como processamos as informações ao nosso redor e o quanto conseguimos aprender a interpretar sinais de formas diferentes. Mas está cada vez mais claro que os atos de enxergar, escutar e sentir não são atividades “passivas”, e envolvem muitos processos complexos e sofisticados em nossos cérebros.

Referências:

[1] Wikipedia – Weber–Fechner law. Disponível aqui.

[2] Régis Trapeau, Marc Schönwiesner.The encoding of sound source elevation in the human auditory cortex. Journal of Neuroscience 5 March 2018, 2530-17. Disponível aqui.

[3] Artigo “How the Shape of Your Ears Affects What You Hear” de Veronique Greenwood para o New York Times. Disponível aqui.

[4] Reza Shadmehr. Learning to Predict and Control the Physics of Our Movements. Journal of Neuroscience 15 February 2017, 37 (7) 1663-1671. Disponível aqui.

0

Sonda Parker: nunca conseguimos “um lugar ao Sol” tão rápido

Lançada no dia 12 deste mês, a Parker Solar Probe, da NASA, ainda não chegou ao seu destino, o nosso Sol. Isso deve acontecer apenas em novembro. Mas não é por falta de velocidade: depois de pegar carona em um foguete Delta IV Heavy e na gravidade de Vênus, a sonda poderá atingir 700 mil km/h – o suficiente para se fazer o trajeto entre Nova York e São Paulo em um minuto. É a maior velocidade atingida por qualquer coisa que a humanidade já construiu.

Tendo custado US$1,5 bilhão, a sonda, que tem mais ou menos o tamanho de um carro, também tem outros superlativos. A uma distância de 6 milhões de quilômetros do Sol, é o instrumento que vai chegar mais próximo da nossa estrela do que qualquer outro que já enviamos para lá. E a Parker quebrará o recorde de proximidade por uma margem absurda: segundo a NASA, a sonda que mais conseguiu se aproximar do Sol foi a Helios 2, que em 1976 ficou a pouco mais de 43 milhões de quilômetros do Sol – apenas um pouco mais próxima que Mercúrio, que orbita a nossa estrela a uma distância de quase 60 milhões de quilômetros. O nosso planeta, em comparação, está a quase 150 milhões de quilômetros do Sol. E ainda bem.

Parker Solar Probe Launch

Delta IV Heavy no momento em que decolou a partir da base da Força Aérea Americana no Cabo Canaveral, Flórida, levando a sonda que vai “tocar” o Sol

A Parker é, também, a primeira sonda batizada com o nome de uma pessoa viva. O físico homenageado, Eugene Parker, é professor emérito de Astronomia e Astrofísica na Universidade de Chicago e no fim dos anos 1950 foi um dos primeiros a se debruçar sobre o que hoje conhecemos como ventos solares (que causam as lindas auroras boreais ou austrais quando se encontram com o campo magnético da Terra). À época, ele achava que matéria de altas velocidades e magnetismo escapavam do Sol constantemente, afetando planetas em todo o Sistema Solar.

Depois de muita observação, ele propôs várias ideias sobre como estrelas perdem energia – nosso Sol, inclusive. Daí veio com o conceito de vento solar e toda a intrincada relação entre plasma, partículas de energia e campos magnéticos que causam o fenômeno. Ele também pesquisou as causas de um fenômeno estranho – o fato de que a coroa solar, ou a “atmosfera” do Sol, é muito mais quente que a superfície da estrela. Muito. Para se ter uma ideia, a superfície do Sol queima a cerca de 5.500°C. A coroa é 300 vezes mais quente que isso e os pesquisadores estão atrás de explicações.

Em um comunicado na NASA na ocasião em que a sonda foi renomeada em homenagem a Parker, Nicola Fox, física da Universidade Johns Hopkins que trabalha no projeto, disse que a Parker “irá responder questões sobre física solar que tem nos intrigado por mais de seis décadas” – inclusive essa diferença de temperatura entre superfície e coroa solar.

Dr. Parker Watches Parker Solar Probe Liftoff

Eugene Parker, 91 anos, assiste o lançamento da sonda que leva seu nome. Atrás dele está Nicola Fox. Créditos: NASA

Nada consegue aguentar um calor de mais de um milhão de graus Celsius. Assim, em seu momento mais próximo do Sol, a sonda Parker será submetida a uma temperatura de 1.377°C. Com um escudo de compósitos de carbono com 11,43 cm revestido de tinta cerâmica branca para refletir o máximo que puder da luz solar, a sonda conseguirá manter confortáveis 30°C em seu interior. Até 2025, ela terá orbitado o Sol 24 vezes e fará medições que, espera-se, trarão muitas surpresas.

Mas o que a sonda Parker vai estudar, mesmo?

Plasma solar, campo magnético e radiação são elementos um tanto quanto gerais para falar do que a Parker quer descobrir. Segundo as equipes da NASA e da Universidade Johns Hopkins, que lideram o projeto, os objetivos principais são 1) traçar o fluxo de energia que aquece e acelera coroa e vento solar; 2) determinar a estrutura e a dinâmica entre plasma e campos magnéticos onde nascem os ventos solares, e 3) explorar mecanismos que aceleram e transportam partículas de energia.

Para fazer tudo isso, a missão vai lançar mão de quatro instrumentos principais:

O Solar Wind Electrons Alphas and Protons Investigation (SWEAP) fará a contagem das partículas mais abundantes em ventos solares (elétrons, prótons e íons de hélio).

Já o telescópio Wide-field Imager for Solar Probe Plus (WISPR) fará imagens em 3D da coroa e da atmosfera do Sol. O instrumento irá “ver” o vento solar e fazer imagens tridimensionais de choques e de outras estruturas conforme elas se aproximarem e passarem pela nave.

O Electromagnetic Fields Investigation (FIELDS) irá fazer medidas diretas de ondas de choque ao longo do plasma da atmosfera solar.

Por fim, o Integrated Science Investigation of the Sun (IS☉IS) irá fazer um levantamento dos elementos presentes na atmosfera solar usando um instrumento que irá medir a massa de íons próximos à sonda.

E por que estudar isso?

A NASA tem alguns motivos ótimos para abordar isso e vai super direto ao ponto quando esta é a questão.

Para eles, é uma questão de oportunidade: o Sol é a única estrela que nós podemos estudar de perto. Entender o Sol seria, assim, uma chance de aprender sobre outras estrelas espalhadas pelo Universo. Fora o Sol, a estrela mais próxima de nós é Proxima Centauri, que está a uns 4,2 anos-luz de distância. Ou seja: muito longe para chegar com uma sonda.

O Sol, é claro, nos afeta diretamente. Não só por questões óbvias (a vida na Terra depende dele), mas também por questões menos desejáveis: estas descargas de partículas ionizadas – os ventos solares – podem afetar a órbita dos nossos satélites (ou mesmo estragá-los), queimar eletrônicos e, na pior das hipóteses, nos deixar sem GPS ou internet. Uma tempestade solar da magnitude da que aconteceu em 1859, apelidada de Evento Carrignton, poderia levar nosso mundo ao caos generalizado. Na época, havia apenas telégrafos. Operadores viram que, ainda que não estivessem conectados à energia elétrica, poderiam enviar mensagens assim mesmo, tanta o excesso de elétrons circulando. E levavam choques ao operar estes telégrafos. Papéis pegaram fogo onde estas máquinas estivessem. Se fosse hoje, além de ficarmos sem internet para operar bancos, hospitais e aviões, poderíamos ter um prejuízo global entre US$ 1 trilhão a US$2 trilhões. E poderia levar uma década até nos recuperarmos completamente.

Esse tipo de evento, no entanto, é raro. Mas estudar o comportamento do Sol pode nos ajudar muito a nos preparar para este tipo de acontecimento – que não é uma questão de “se” acontecerá de novo, mas “quando”.
Saiba mais:

Parker Solar Probe (NASA)

Parker Solar Probe (NASA/Goddard Space Flight Center)

Parker Solar Probe Science Gateway (Johns Hopkins Applied Physics Laboratory)

NASA Renames Solar Probe Mission to Honor Pioneering Physicist Eugene Parker (NASA)

Parker Solar Probe: Mission to Touch the Sun (Space.com)

A massive solar storm could wipe out almost all of our modern technology without warning (Business Insider)

0

Em 1919 a teoria de Einstein foi confirmada no Ceará

Texto escrito em parceria com @ruajosephine.

Há 99 anos, em 29 de maio de 1919, uma equipe de cientistas estava em Sobral, cidade do Ceará, para comprovar a teoria da gravitação de Albert Einstein — a Teoria da Relatividade Geral — a partir de um eclipse solar.  Isso mesmo! Foi em terras brasileiras, marcadas pela seca e muitas histórias contadas em cordéis, que uma equipe bem diversa de físicos e astrônomos brasileiros, ingleses e americanos, enviada pelo astrônomo inglês Sir Eddington comprovou a arretada e soberana Teoria da Relatividade Geral! [1] Além dessa expedição no Ceará, Sir Eddington liderava pessoalmente outra equipe que estava na Ilha do Príncipe, na África, para corroborar com tal comprovação científica. Mas vamos trazer um ponto de vista brasileiro, especificamente cearense para essa história!

Foto 1: A tranquilidade no olhar de Albert Einstein ao comprovar sua teoria da Relatividade Geral.

Antes desse feito o mundo vivia uma ciência fixa, sem muitas contradições desde 1666, com a teoria da Gravitação Universal muito bem estruturada por Isaac Newton, que dizia que a velocidade da luz poderia ser somada à rapidez daquilo que a emitia, num universo onde o tempo era constante e o espaço absoluto. Tudo começou a mudar na virada do século XIX para o XX, quando as equações do escocês James Maxwell passaram a demonstrar que a velocidade da luz é que é constante e não poderia ser somada à nada.

Nesse contexto Einstein criou a teoria da Relatividade Restrita, que descreve a física do movimento na ausência de campos gravitacionais. Essa teoria era incompatível com a teoria da gravitação de Newton. Uma nova teoria da gravitação seria necessária para explicar fenômenos gravitacionais em alta velocidade (comparáveis à velocidade da luz) ou com altas energias. Vale lembrar que a teoria de Newton e a teoria de Einstein coincidem em baixas energias/velocidades. Foi chutando o balde, abandonando a solidez da teoria de Newton e considerando as equações de Maxwell, Einstein chegou a Teoria da Relatividade Geral, base da ciência moderna, que prever que a matéria (planetas, estrelas, etc) é responsável por mudar a geometria espaço-tempo do universo, que passa a ser relativa. Mas como comprovar essa teoria?

Para verificar a Relatividade Geral era preciso fotografar o céu durante um eclipse solar: se a teoria de Newton estivesse correta, não veríamos a imagem de uma estrela atrás do Sol porque a luz da estrela seria interrompida pelo próprio Sol. Já se a teoria de Einstein estivesse correta, seríamos capazes de ver a imagem da estrela porque a luz emitida seria distorcida de tal forma que a estrela aparentaria estar ao lado do Sol ao invés de atrás. Para concluir qual teoria estava correta, os cientistas precisaram comparar essa fotografia com outra, daquele mesmo grupo de estrelas, numa noite normal, quando o Sol já houvesse mudado para outra posição.

Para entender melhor, imagina que você está vendo TV e alguém coloca um balde de pipoca exatamente entre você e a tela, atrapalhando a sua visão. A luz da tela não consegue chegar até você porque ela não atravessa o balde de pipoca, certo? Agora troca a imagem da TV pela imagem da estrela e o balde de pipoca que estava te atrapalhando pelo Sol. A teoria de Newton diz que você não virá a luz da estrela pelo mesmo motivo que você não vê a tela da TV quando tem um balde de pipoca na sua frente. Já a teoria de Einstein diz que se massa intrometida (do Sol durante o eclipse ou do balde de pipoca) é o grande o suficientemente, ela distorce o espaço ao seu redor. Einstein previu que o Sol causaria esse efeito no espaço e curvaria a luz que passasse por ele, como acontece no caso da luz de estrelas posicionadas atrás do Sol durante o eclipse solar. Foi para fotografar essa curva que a luz faz ao passar pelo Sol que os astrônomos foram à Ilha do Príncipe e à Sobral, no Ceará. [2]

1919_eclipse_positive

Foto 2: Eclipse solar de Sobral, em 1919.

A comprovação da Teoria da Relatividade Geral de Einstein, a partir do que se viu na escuridão do eclipse solar em Sobral, foi apresentada em novembro de 1919, durante a reunião da Sociedade Real Astronômica  (Royal Astronomical Society), em Londres, modificando a forma como a humanidade entende a física.

Hoje a cidade de Sobral muito se orgulha de ter sido palco do triunfo desse cientista universal. Criou o Museu do Eclipse em 1999, que guarda a luneta utilizada pela expedição de Einstein e muitas fotografias originais das pesquisas realizadas na cidade. O Museu encontra-se fechado para manutenção e reabrirá para o centenário em 2019.

museu-do-eclipse

Foto 3: Museu do Eclipse, Sobral, Ceará.

A prefeitura de Sobral organiza uma comemoração para o centenário do fenômeno junto à Sociedade Brasileira para o Progresso da Ciência (SBPC), quando irão realizar palestras, exposições, congressos, simpósios, além da construção de um monumento em alusão à comprovação da teoria. Sobral mostrou ao mundo a comprovação da Teoria da Relatividade, a física moderna é também cearense, minha gente! [1]

Referências:

[1] http://plus.diariodonordeste.com.br/sobral-sediou-prova-da-teoria-da-relatividade/#intro – 2018.

[2] https://super.abril.com.br/ciencia/einstein-no-ceara-as-aventuras-e-desventuras-de-uma-teoria-arretada-nos-confins-do-sertao/ – 2012.

0

Asteroides : O início e o fim da humanidade?

Asteroides têm seu próprio charme. Mais do que uma simples pedrinha espacial, um asteroide pode ser a resposta pra vida da Terra e mesmo o responsável pelo fim da humanidade no futuro. Várias agências de pesquisas têm concentrado seus esforços para entender melhor esses objetos.

A hipótese que a vida pode ter sido trazida a Terra é chamada de Panspermia. Essa ideia foi abandonada por muitos anos pela falta de dados que pudessem corroborar essa ideia mas no fim dos anos 70 com a descoberta de meteoritos originados de Marte na Terra, mostrou-se que era possível a troca de matéria entre objetos no espaço e essa hipótese ganhou força novamente. [1] [2]

A chegada de um asteroide com material orgânico na Terra não é simples. Os microrganismos precisam de um ambiente em que possam sobreviver durante toda a viagem interplanetária. Entretanto, experimentos espaciais demonstraram que com proteção ultravioleta mínima, vários tipos de microrganismos podem sobreviver por anos ao ambiente hostil do espaço. Os resultados demonstraram que os microrganismos poderiam sobreviver a aceleração para a velocidades de escape de Marte e ao impacto subsequente em superfícies de diferentes composições. Assim, há fortes evidências de que microrganismos podem sobreviver às condições de transferência interplanetárias [1].

O sistema Terra-Marte não é o único lugar onde transferência natural pode ocorrer. A descoberta de potencialmente ambientes habitáveis, como alguns satélites de Júpiter e Saturno, expande a possibilidade de transferência de vida no Sistema Solar [1].

Para estudar melhor as possibilidades de microrganismos e composição de asteroides, várias missões têm sido lançadas com o objetivo de coleta de material para a análise na Terra.

A Hayabusa, da Agência Japonesa de Exploração Aeroespacial (JAXA), foi desenvolvida para coletar amostras do asteroide Itokawa e devolvê-las à Terra. Itokawa é um NEO (Near Earth Object), um objetos próximos da Terra que foi empurrado pela atração gravitacional de planetas próximos em órbitas que lhes permitem entrar na vizinhança da Terra, ou seja, tem maiores chances de colisão com a Terra [3][6].

A missão foi lançada em maio de 2003 e encontrou o asteróide Itokawa em novembro de 2005. Lá, fez várias tentativas de coletar. Durante uma dessas tentativas, a espaçonave inesperadamente perdeu a comunicação com a Terra e aterrissou na superfície do asteroide, danificando a espaçonave. Apesar desse revés, a JAXA conseguiu devolver a Hayabusa com segurança para a Terra em junho de 2010 [3].

Embora o mecanismo de coleta não tenha funcionado, milhares de partículas foram encontradas em um dos recipientes de amostra, aparentemente introduzidos durante o impacto da espaçonave na superfície do asteroide. Muitas dessas partículas seriam do asteroide por sua química e mineralogia, mas infelizmente foram contaminadas por partículas da espaçonave. Assim, em vez de devolver vários gramas de amostra, a Hayabusa retornou menos de um miligrama de amostra. No entanto, estas são as primeiras amostras diretas de um asteroide e, portanto, têm grande valor científico [3].

itokawa

Figura 1: Foto do Itokawa tirada pela Hayabusa em 2005. Créditos: JAXA

Seguindo a mesma linha, a JAXA enviou a Hayabusa2 que teria os pontos fracos da missão anterior resolvidos. Hayabusa2 foi lançado em dezembro de 2014 e encontrou-se com o asteroide 162173 Ryugu em 27 de junho de 2018. A missão deve inspecionar o asteróide por um ano e meio e retornar à Terra em dezembro de 2020 [4].

A Hayabusa2 também coletará material do asteroide e contem um dispositivo explosivo adicional que será usado para cavar o subsolo do asteroide [4].

 

ryugu

Figura 2: Foto do 162173 Ryugu tirada pela Hayabusa2 . Créditos: JAXA

A missão da NASA, OSIRIS-REx (Origins Spectral Interpretation Resource Identification Security Regolith Explorer) segue a mesma lógica das missões japonesas, é uma missão de retorno de amostras de asteroides. Lançada em setembro de 2016, sua missão é estudar o asteroide 101955 Bennu, também considerado um NEO, e retornar uma amostra para a Terra em setembro de 2023 [5].

Os NEOs podem ser uma grande ameaça para a humanidade. Mais de 1 milhão de asteroides têm o potencial de impactar a Terra, e através de todos os telescópios disponíveis em todo o mundo, descobrimos apenas cerca de um por cento. Por causa disso foi criado o Dia do Asteroide (Asteroid Day), cujo os detalhes você pode encontrar no texto do próprio blog.

Resumidamente, o Asteroid Day (30 de Junho) é uma maneiras para conscientizar a sociedade sobre asteroides e as possibilidades de queda na Terra. A iniciativa também é uma maneira para estimular o investimento em pesquisa desses objetos. Alguns projetos brasileiros compostos de astrônomos profissionais e amadores têm colaborado para o monitoramento desses objetos quando atingem a atmosfera da Terra, como é o caso do Bramon e do Exoss.

O Brasil, pelo segundo ano seguido, foi a país que mais desenvolveu atividades no Asteroid Day. As atividades foram constituídas de palestras, cartazes, observações do céu dentre outras atividades, tudo acessível para todos os públicos.

asteroid-day-brasil-quadro-final

Figura 3: Número de eventos do Asteroid day em diversos países. Créditos: EXOSS

O Asteroid Day é uma ótima forma de conectar a academia com a comunidade e o Brasil fez o seu dever de casa. De norte a sul iniciativas como esta tem se tornando cada vez mais comum entre os cientistas, o que colabora para o acesso da população aos trabalhos desenvolvidos dentro da universidades e centros de pesquisas.

Referências:

[1] P. H. Rampelotto; PANSPERMIA: A PROMISING FIELD OF RESEARCH; Astrobiology Science Conference 2010;

[2] http://www.sciencemag.org/news/2016/08/nasa-sample-asteroid-clues-life-earth

[3] https://curator.jsc.nasa.gov/hayabusa/

[4] http://global.jaxa.jp/press/2018/06/20180627_hayabusa2.html

[5] https://www.nasa.gov/mission_pages/osiris-rex/

[6] https://cneos.jpl.nasa.gov/about/basics.html

 

 

 

0

Um ponto ótimo para as oscilações neuronais

Considerando o senso comum, parece que quanto mais bagunça adicionamos a um sistema, mais difícil a transmissão de informação através dele. Por exemplo, em uma sala silenciosa você poderia facilmente conversar com uma amiga a dois metros de distância de você. Mas se aos poucos vão chegando outras pessoas na sala, e estas pessoas estão conversando entre si, é fácil imaginar que vai ficando cada vez mais difícil entender o que sua amiga fala. Ou seja, quanto maior o barulho (ou ruído) na sala, mais difícil mantermos a comunicação. No entanto, essa diminuição da transmissão de informação com o aumento do ruído (que parece bastante intuitiva para nós), nem sempre é verificada.

Alguns sistemas físicos e biológicos apresentam um fenômeno chamado coerência estocástica (ou ressonância estocástica) que, em palavras simples, consiste em um aumento da transmissão da informação induzido pelo aumento do ruído. Esses sistemas apresentam um valor de ruído ótimo, para o qual a transmissão de informação é máxima.

Voltando ao nosso exemplo da conversa em uma sala. Imagine hipoteticamente que esta sala apresentasse este efeito de ressonância estocástica. Isto significaria que a qualidade da comunicação entre você e sua amiga aumentaria com a entrada das primeiras pessoas na sala até um valor máximo. Existiria um número n de pessoas (uma certa quantidade de barulho) que ajudaria na transmissão da informação. O barulho só passaria a atrapalhar a conversa de vocês depois que a pessoa de número n+1 entrasse na sala. Parece pouco intuitivo não é?

Mas um exemplo verdadeiro desse fenômeno pode ser verificado na seguinte imagem [1]:

8_image

Figura modificada da Ref. [1]. À imagem original do Big Ben foi adicionada uma certa quantidade de ruído, que aumenta da figura da esquerda para a da direita. Note que para uma quantidade intermediária de ruído podemos reconhecer melhor a imagem.

Cada um dos 256×256 pixels da foto original digitalizada é representado por um número de 1 a 256 representando a escala de tons de cinza. Nas três imagens acima, a cada um desses pixels foi adicionado ao valor inicial um número aleatório (de maneira que a quantidade de ruído total adicionado a cada imagem aumenta da esquerda para direita [1]) Podemos notar que a imagem mais nítida é a do meio, indicando que existe um valor ótimo de ruído para o qual nosso cérebro interpreta melhor essa imagem como “Big Ben”. Em outras palavras, a natureza passou a utilizar a existência do ruído aleatório a seu favor.

Recentemente, a pesquisadora Belén Sancristobal e seus colaboradores, verificaram que este fenômeno da coerência estocástica ocorre em um modelo computacional de redes de neurônios conectados e também em uma rede de neurônios reais pertencentes a um pedacinho do córtex de um furão. Ao contrário de estudos anteriores em sistemas com apenas um neurônio, eles mostraram que a coerência estocástica pode ocorrer como um fenômeno coletivo e emergente. O ruído nesses experimentos contribui para deixar o sistema mais previsível. (Mais detalhes abaixo).

Em alguns estados especiais, por exemplo durante o sono de ondas lentas ou quando estamos anestesiados, a atividade elétrica de regiões corticais do nosso cérebro oscila em frequências da ordem de 1Hz entre dois estados bem definidos chamados UP e DOWN. Os estados UP são caracterizados pelos disparos de vários neurônios (atividade sustentada), estes disparos são parecidos com os que ocorrem durante momentos em que estamos acordados e saudáveis. Por outro lado, durante os estados DOWN a maioria dos neurônios se mantêm em silêncio. Esse estado oscilante entre UP e DOWN também já foi verificado em experimentos in vitro na ausência de estímulo externo. Isto indica que essas oscilações  podem ser uma atividade auto-sustentada que ocorre em redes relativamente pequenas devido, possivelmente, às conexões recorrentes entre os neurônios locais. A medida em que vamos despertando de um estado profundo de anestesia, a regularidade das oscilações de UP e DOWN diminuem até que desaparecem por completo quando estamos acordados (nos mantemos apenas em UP). Nesses estágios intermediários é mais difícil prever quando ocorrerá um estado UP. A natureza desses estados mais regulares durante a anestesia profunda ainda não é bem entendida na comunidade científica. Em particular, não se sabe se ela é determinística ou devido a ruído externo.

O estudo citado acima [2] abordou justamente esta questão. Eles mostraram que a regularidade da oscilações UP e DOWN, pelo menos em alguns casos específicos in vitro, está associada ao fenômeno da coerência estocástica.  Variando a excitabilidade neuronal através da concentração extracelular de  potássio, eles mostraram que o coeficiente de variação da duração dos estados UP e DOWN tem um mínimo para uma certa concentração específica de potássio. Sendo assim, eles provaram através de modelos computacionais e experimentos in vitro que existe um valor intermediário de ruído para o qual a regularidade das oscilações neuronais UP e DOWN é máxima. Além disso, como o trabalho utilizou redes de vários neurônios, estes resultados mostram que a coerência estocástica pode ocorrer como um fenômeno coletivo e emergente no nosso cérebro. Ou seja, apesar de cada neurônio individualmente do sistema não estar em um regime de coerência estocástica, esse regime surge (emerge) quando conectamos os neurônios uns aos outros de uma maneira específica.

Parece que, mais uma vez, a evolução garantiu a perpetuação de quem usou as adversidades do meio a seu favor e nos colocou em algum ponto ótimo.


8_image2

Figura modificada da Ref. [2].  Primeira evidência experimental da coerência estocástica em tecidos corticais. Esses dados foram obtidos no laboratório da  pesquisadora Mavi Sanchez Vives em Barcelona. No topo, séries temporais da atividade elétrica do tecido mostrando os estados UP e DOWN para três concentrações diferentes de potássio. Na base, medida da variabilidade dos estados como função da concentração de potássio em várias repetições do experimento (colorido) e o valor médio em preto. Note que no ponto ótimo [K+]=0 há um mínimo na variabilidade, indicando um máximo na previsibilidade dos estados UP e DOWN.

Referências:

[1] Simonotto, Enrico; Riani, Massimo; Seife, Charles; Roberts, Mark; Twitty, Jennifer; Moss, Frank (1997). “Visual Perception of Stochastic Resonance”. Physical Review Letters. 78 (6): 1186.

[2] Sancristóbal B, Rebollo B, Boada P, Sanchez-Vives MV, Garcia-Ojalvo J. Collective stochastic coherence in recurrent neuronal networks. Nature Physics. 2016 Sep;12(9):881.

 

0

Como estarão a Antártica e o Oceano Austral em 2070?

 

r384SYGQSgCVaQ50DhEm4A_thumb_88f5

Foto: Iceberg no Setor Atlântico do Oceano Austral. OPERANTAR XXXIII. Natalia Ribeiro

Apesar de ser uma das regiões mais remotas do planeta, a Antártica está completamente acoplada ao restante do sistema climático terrestre. As teleconexões oceânicas e atmosféricas se comunicam com as variações do clima das baixas às altas latitudes, influenciando a atmosfera polar, a estabilidade das plataformas de gelo, o gelo marinho e a própria biosfera. Dada a influência da Antártica e do Oceano Austral no aumento do nível do mar, clima e ecossistemas marinhos em geral, mudanças na região trazem consequências generalizadas para o planeta e para a humanidade. Por conta da situação política do continente e do oceano, que são divididos e regulados por um conjunto de países através do Tratado Antártico, todas as decisões dependem de esforço global e, portanto, estão idealmente atreladas aos interesses de todos e não somente a uma nação. Dessa forma, as decisões tomadas no presente, serão as responsáveis por como será o mundo do futuro para as crianças de hoje.

Em um estudo publicado recentemente na revista Nature, pesquisadores discutem dois cenários sob a perspectiva de um observador do futuro, baseado nas decisões tomadas 50 anos antes. (1) No primeiro cenário, as emissões de gases do Efeito Estufa não foram controladas, o clima segue esquentando e as decisões tomadas para responder às mudanças climáticas foram inefetivas de forma geral. (2) No segundo cenário, ações ambiciosas foram tomadas para limitar as emissões de gases do Efeito Estufa e para estabelecer políticas que reduzissem a pressão antropogênica sobre o ambiente. Para desenvolver esses cenários foram utilizados dados quantitativos de modelos climáticos para variáveis físicas e químicas e, quando não era possível (ex. avaliação da situação dos sistemas biológicos e sociais), foi feita uma análise heurística, baseada no entendimento dos processos e respostas conhecidas de mudanças passadas.

Screen Shot 2018-07-01 at 3.47.09 PM

Fig. 1 | Antártica e Oceano Austral em 2070, sob os cenários de “baixas emissões/ações efetivas (esquerda) e “altas emissões/ações fracas” (direita).

(1) Antártica em 2070 sob altas emissões, segundo nosso viajante do futuro:

“Observando os 50 anos anteriores, fica claro que os últimos 50 anos se desenvolveram de acordo com o esperado pelo 5˚ Relatório do IPCC (2013). A demanda por alimentos e energia aumentou devido ao crescimento populacional e foi suprida por intensa atividade agrícola, principalmente sustentada por combustíveis fósseis e desmatamento. Isso, aliada à falta de regulação das emissões, acabou por aumentar ainda mais as emissões de gases de efeito estufa.

A temperatura média do ar já é mais de 3.5˚C mais alta que no fim do século XIX, o que excede os 2˚C recomendados pelos acordos climáticos internacionais (como o Acordo de Paris). A temperatura do Oceano Austral aumentou 1.9˚C o que, aliada à dessalinização por conta do aumento da precipitação, causou profundas mudanças na circulação dos oceanos e colapso de plataformas de gelo tanto do oeste como do leste da Antártica. Os icebergs gerados são cuidadosamente monitorados por conta do aumento do tráfego de navios na área, tanto de turismo como navios de pesca e navios comerciais. A melhora do acesso ao continente, aumentou consideravelmente a pesca. Rapidamente a sobrepesca de algumas espécies base alterou as cadeias tróficas, diminuindo o número de predadores de topo (como os pinguins) e ferindo a biodiversidade da região. Espécies invasoras no continente, especialmente de plantas, também são uma realidade.

O aumento do nível do mar já causa mais de 1 trilhão de dólares de prejuízo por conta de 27 cm de aumento, e as taxas esperadas para os próximos anos consideram um aumento de 10m irreversível, números similares ao último período de deglaciação da Terra.

As alianças começam a dar sinais de desgaste. Muitas discussões sobre criação de espécies marinhas e, principalmente, mineração, e como esses recursos poderiam ser divididos entre as nações causam conflitos que parecem ser irreversíveis. A conservação vai perdendo a importância e a Antártica hoje é tratada como um Parque Nacional ou reserva ambiental, vivendo precariamente do balanço entre turismo, lucro possível e conservação da biodiversidade.”

(2) Antártica em 2070 sob baixas emissões, segundo nosso viajante do futuro:

“Embora as perspectivas de ação global eficaz para mitigar as emissões parecessem sombrias em 2015, a subsequente ratificação do acordo climático das Nações Unidas em Paris (Acordo de Paris) por 196 países, anunciou uma nova era de cooperação internacional para reduzir as emissões de gases de efeito estufa. A redução mais rápida do que o previsto nos custos das energias renováveis ​​desencadeou uma rápida transição do carvão. Um aumento na magnitude e frequência de eventos climáticos extremos que afetam grandes populações e economias destacou a vulnerabilidade generalizada e convenceu os tomadores de decisão a aumentar sua ambição de reduzir as emissões de gases de efeito estufa, com o forte envolvimento de cidades, regiões e empresas. Como resultado dessas políticas, a ampliação dos feedbacks de carbono não foi acionada, e estamos agora no caminho para manter o aquecimento bem abaixo da meta de 2°C. Novos caminhos financeiros ajudaram a criar um mercado de carbono funcional e equitativo, que é um incentivo para a rápida transição para uma economia de baixo carbono. Líderes empresariais e gestores de fundos começaram a apreciar as oportunidades financeiras e outros co-benefícios da transição associada à descarbonização, e as novas tecnologias permitiram o sequestro seguro e eficiente e, por fim, a remoção de gases de efeito estufa da atmosfera. O amplo reconhecimento dos perigos do uso irrestrito de combustíveis fósseis inspirou mudanças nos padrões de consumo no mundo desenvolvido, incluindo mudanças em dietas baseadas em plantas mais sustentáveis ​​e mudanças na agricultura e práticas de uso da terra. A disponibilidade de energia renovável de baixo custo permitiu que os países em desenvolvimento fornecessem energia acessível e diminuíssem a pobreza.

A temperatura do ar e demais aspectos da atmosfera, como o padrão de ventos, se mantiveram muito similares aos padrões de 50 anos atrás. As tendências de aquecimento e dessalinização no Oceano Austral observadas no início do século XXI foram se reduzindo até reverterem entre 2020 e 2050. As plataformas de gelo ficaram menos expostas às águas quentes, mas essa mudança não aconteceu rápido o suficiente para preservar as plataformas do oeste da Antártica. Quanto às plataformas do leste da Antártica, mais volumosas, estas se mantiveram relativamente intactas. O aumento do nível do mar foi de 6cm e continua principalmente sendo derivado da expansão térmica. O gelo marinho também retraiu, mas apenas 15%.

Em relação à biodiversidade, a estrutura continua muito parecida com a de 50 anos atrás e as espécies invasoras continuam controladas, principalmente porque a relativa estabilidade da  temperatura manteve o ambiente inóspito para as espécies que dominam os outros continentes. As ações mitigatórias também foram efetivas em diminuir a taxa de acidificação dos oceanos, preservando a biodiversidade dependente de cálcio e aragonita.

Como reflexo dos bons resultados do Acordo de Paris e motivadas por uma apreciação mais clara das ameaças à região e o valor global de uma melhor compreensão da Antártica e suas ligações com latitudes mais baixas, as nações envolvidas reafirmaram o compromisso de manter a Antártida como uma reserva natural para a paz e ciência.”

E o presente?

Os dois cenários são altamente especulativos e, segundo os autores, a intenção do estudo prioriza mais catalisar a discussão do que fazer previsões diretas para o futuro. A principal lição é que as escolhas feitas na próxima década irão determinar que trajetória seguiremos enquanto humanidade e que, apesar de o caminho da preservação e mitigação não ser fácil, ele é possível.

 

 

____________________________________________________________________________________________

Referências

Rintoul, S.; Chown, S.; Deconto, R.; England, M.; Fricker, H.; Masson-Delmotte, V.; Naish, T.; Siegert, M. and  J. Xavier. 2018. Choosing the future of Antarctica. Nature, 558, 233 – 241.