0

Em 1919 a teoria de Einstein foi confirmada no Ceará

Texto escrito em parceria com @ruajosephine.

Há 99 anos, em 29 de maio de 1919, uma equipe de cientistas estava em Sobral, cidade do Ceará, para comprovar a teoria da gravitação de Albert Einstein — a Teoria da Relatividade Geral — a partir de um eclipse solar.  Isso mesmo! Foi em terras brasileiras, marcadas pela seca e muitas histórias contadas em cordéis, que uma equipe bem diversa de físicos e astrônomos brasileiros, ingleses e americanos, enviada pelo astrônomo inglês Sir Eddington comprovou a arretada e soberana Teoria da Relatividade Geral! [1] Além dessa expedição no Ceará, Sir Eddington liderava pessoalmente outra equipe que estava na Ilha do Príncipe, na África, para corroborar com tal comprovação científica. Mas vamos trazer um ponto de vista brasileiro, especificamente cearense para essa história!

Foto 1: A tranquilidade no olhar de Albert Einstein ao comprovar sua teoria da Relatividade Geral.

Antes desse feito o mundo vivia uma ciência fixa, sem muitas contradições desde 1666, com a teoria da Gravitação Universal muito bem estruturada por Isaac Newton, que dizia que a velocidade da luz poderia ser somada à rapidez daquilo que a emitia, num universo onde o tempo era constante e o espaço absoluto. Tudo começou a mudar na virada do século XIX para o XX, quando as equações do escocês James Maxwell passaram a demonstrar que a velocidade da luz é que é constante e não poderia ser somada à nada.

Nesse contexto Einstein criou a teoria da Relatividade Restrita, que descreve a física do movimento na ausência de campos gravitacionais. Essa teoria era incompatível com a teoria da gravitação de Newton. Uma nova teoria da gravitação seria necessária para explicar fenômenos gravitacionais em alta velocidade (comparáveis à velocidade da luz) ou com altas energias. Vale lembrar que a teoria de Newton e a teoria de Einstein coincidem em baixas energias/velocidades. Foi chutando o balde, abandonando a solidez da teoria de Newton e considerando as equações de Maxwell, Einstein chegou a Teoria da Relatividade Geral, base da ciência moderna, que prever que a matéria (planetas, estrelas, etc) é responsável por mudar a geometria espaço-tempo do universo, que passa a ser relativa. Mas como comprovar essa teoria?

Para verificar a Relatividade Geral era preciso fotografar o céu durante um eclipse solar: se a teoria de Newton estivesse correta, não veríamos a imagem de uma estrela atrás do Sol porque a luz da estrela seria interrompida pelo próprio Sol. Já se a teoria de Einstein estivesse correta, seríamos capazes de ver a imagem da estrela porque a luz emitida seria distorcida de tal forma que a estrela aparentaria estar ao lado do Sol ao invés de atrás. Para concluir qual teoria estava correta, os cientistas precisaram comparar essa fotografia com outra, daquele mesmo grupo de estrelas, numa noite normal, quando o Sol já houvesse mudado para outra posição.

Para entender melhor, imagina que você está vendo TV e alguém coloca um balde de pipoca exatamente entre você e a tela, atrapalhando a sua visão. A luz da tela não consegue chegar até você porque ela não atravessa o balde de pipoca, certo? Agora troca a imagem da TV pela imagem da estrela e o balde de pipoca que estava te atrapalhando pelo Sol. A teoria de Newton diz que você não virá a luz da estrela pelo mesmo motivo que você não vê a tela da TV quando tem um balde de pipoca na sua frente. Já a teoria de Einstein diz que se massa intrometida (do Sol durante o eclipse ou do balde de pipoca) é o grande o suficientemente, ela distorce o espaço ao seu redor. Einstein previu que o Sol causaria esse efeito no espaço e curvaria a luz que passasse por ele, como acontece no caso da luz de estrelas posicionadas atrás do Sol durante o eclipse solar. Foi para fotografar essa curva que a luz faz ao passar pelo Sol que os astrônomos foram à Ilha do Príncipe e à Sobral, no Ceará. [2]

1919_eclipse_positive

Foto 2: Eclipse solar de Sobral, em 1919.

A comprovação da Teoria da Relatividade Geral de Einstein, a partir do que se viu na escuridão do eclipse solar em Sobral, foi apresentada em novembro de 1919, durante a reunião da Sociedade Real Astronômica  (Royal Astronomical Society), em Londres, modificando a forma como a humanidade entende a física.

Hoje a cidade de Sobral muito se orgulha de ter sido palco do triunfo desse cientista universal. Criou o Museu do Eclipse em 1999, que guarda a luneta utilizada pela expedição de Einstein e muitas fotografias originais das pesquisas realizadas na cidade. O Museu encontra-se fechado para manutenção e reabrirá para o centenário em 2019.

museu-do-eclipse

Foto 3: Museu do Eclipse, Sobral, Ceará.

A prefeitura de Sobral organiza uma comemoração para o centenário do fenômeno junto à Sociedade Brasileira para o Progresso da Ciência (SBPC), quando irão realizar palestras, exposições, congressos, simpósios, além da construção de um monumento em alusão à comprovação da teoria. Sobral mostrou ao mundo a comprovação da Teoria da Relatividade, a física moderna é também cearense, minha gente! [1]

Referências:

[1] http://plus.diariodonordeste.com.br/sobral-sediou-prova-da-teoria-da-relatividade/#intro – 2018.

[2] https://super.abril.com.br/ciencia/einstein-no-ceara-as-aventuras-e-desventuras-de-uma-teoria-arretada-nos-confins-do-sertao/ – 2012.

Anúncios
0

Asteroides : O início e o fim da humanidade?

Asteroides têm seu próprio charme. Mais do que uma simples pedrinha espacial, um asteroide pode ser a resposta pra vida da Terra e mesmo o responsável pelo fim da humanidade no futuro. Várias agências de pesquisas têm concentrado seus esforços para entender melhor esses objetos.

A hipótese que a vida pode ter sido trazida a Terra é chamada de Panspermia. Essa ideia foi abandonada por muitos anos pela falta de dados que pudessem corroborar essa ideia mas no fim dos anos 70 com a descoberta de meteoritos originados de Marte na Terra, mostrou-se que era possível a troca de matéria entre objetos no espaço e essa hipótese ganhou força novamente. [1] [2]

A chegada de um asteroide com material orgânico na Terra não é simples. Os microrganismos precisam de um ambiente em que possam sobreviver durante toda a viagem interplanetária. Entretanto, experimentos espaciais demonstraram que com proteção ultravioleta mínima, vários tipos de microrganismos podem sobreviver por anos ao ambiente hostil do espaço. Os resultados demonstraram que os microrganismos poderiam sobreviver a aceleração para a velocidades de escape de Marte e ao impacto subsequente em superfícies de diferentes composições. Assim, há fortes evidências de que microrganismos podem sobreviver às condições de transferência interplanetárias [1].

O sistema Terra-Marte não é o único lugar onde transferência natural pode ocorrer. A descoberta de potencialmente ambientes habitáveis, como alguns satélites de Júpiter e Saturno, expande a possibilidade de transferência de vida no Sistema Solar [1].

Para estudar melhor as possibilidades de microrganismos e composição de asteroides, várias missões têm sido lançadas com o objetivo de coleta de material para a análise na Terra.

A Hayabusa, da Agência Japonesa de Exploração Aeroespacial (JAXA), foi desenvolvida para coletar amostras do asteroide Itokawa e devolvê-las à Terra. Itokawa é um NEO (Near Earth Object), um objetos próximos da Terra que foi empurrado pela atração gravitacional de planetas próximos em órbitas que lhes permitem entrar na vizinhança da Terra, ou seja, tem maiores chances de colisão com a Terra [3][6].

A missão foi lançada em maio de 2003 e encontrou o asteróide Itokawa em novembro de 2005. Lá, fez várias tentativas de coletar. Durante uma dessas tentativas, a espaçonave inesperadamente perdeu a comunicação com a Terra e aterrissou na superfície do asteroide, danificando a espaçonave. Apesar desse revés, a JAXA conseguiu devolver a Hayabusa com segurança para a Terra em junho de 2010 [3].

Embora o mecanismo de coleta não tenha funcionado, milhares de partículas foram encontradas em um dos recipientes de amostra, aparentemente introduzidos durante o impacto da espaçonave na superfície do asteroide. Muitas dessas partículas seriam do asteroide por sua química e mineralogia, mas infelizmente foram contaminadas por partículas da espaçonave. Assim, em vez de devolver vários gramas de amostra, a Hayabusa retornou menos de um miligrama de amostra. No entanto, estas são as primeiras amostras diretas de um asteroide e, portanto, têm grande valor científico [3].

itokawa

Figura 1: Foto do Itokawa tirada pela Hayabusa em 2005. Créditos: JAXA

Seguindo a mesma linha, a JAXA enviou a Hayabusa2 que teria os pontos fracos da missão anterior resolvidos. Hayabusa2 foi lançado em dezembro de 2014 e encontrou-se com o asteroide 162173 Ryugu em 27 de junho de 2018. A missão deve inspecionar o asteróide por um ano e meio e retornar à Terra em dezembro de 2020 [4].

A Hayabusa2 também coletará material do asteroide e contem um dispositivo explosivo adicional que será usado para cavar o subsolo do asteroide [4].

 

ryugu

Figura 2: Foto do 162173 Ryugu tirada pela Hayabusa2 . Créditos: JAXA

A missão da NASA, OSIRIS-REx (Origins Spectral Interpretation Resource Identification Security Regolith Explorer) segue a mesma lógica das missões japonesas, é uma missão de retorno de amostras de asteroides. Lançada em setembro de 2016, sua missão é estudar o asteroide 101955 Bennu, também considerado um NEO, e retornar uma amostra para a Terra em setembro de 2023 [5].

Os NEOs podem ser uma grande ameaça para a humanidade. Mais de 1 milhão de asteroides têm o potencial de impactar a Terra, e através de todos os telescópios disponíveis em todo o mundo, descobrimos apenas cerca de um por cento. Por causa disso foi criado o Dia do Asteroide (Asteroid Day), cujo os detalhes você pode encontrar no texto do próprio blog.

Resumidamente, o Asteroid Day (30 de Junho) é uma maneiras para conscientizar a sociedade sobre asteroides e as possibilidades de queda na Terra. A iniciativa também é uma maneira para estimular o investimento em pesquisa desses objetos. Alguns projetos brasileiros compostos de astrônomos profissionais e amadores têm colaborado para o monitoramento desses objetos quando atingem a atmosfera da Terra, como é o caso do Bramon e do Exoss.

O Brasil, pelo segundo ano seguido, foi a país que mais desenvolveu atividades no Asteroid Day. As atividades foram constituídas de palestras, cartazes, observações do céu dentre outras atividades, tudo acessível para todos os públicos.

asteroid-day-brasil-quadro-final

Figura 3: Número de eventos do Asteroid day em diversos países. Créditos: EXOSS

O Asteroid Day é uma ótima forma de conectar a academia com a comunidade e o Brasil fez o seu dever de casa. De norte a sul iniciativas como esta tem se tornando cada vez mais comum entre os cientistas, o que colabora para o acesso da população aos trabalhos desenvolvidos dentro da universidades e centros de pesquisas.

Referências:

[1] P. H. Rampelotto; PANSPERMIA: A PROMISING FIELD OF RESEARCH; Astrobiology Science Conference 2010;

[2] http://www.sciencemag.org/news/2016/08/nasa-sample-asteroid-clues-life-earth

[3] https://curator.jsc.nasa.gov/hayabusa/

[4] http://global.jaxa.jp/press/2018/06/20180627_hayabusa2.html

[5] https://www.nasa.gov/mission_pages/osiris-rex/

[6] https://cneos.jpl.nasa.gov/about/basics.html

 

 

 

0

As luas geladas e suas implicações para a astrobiologia: Viajando por Ganimedes, Calisto e Io

Parte III

No começo da nossa série sobre as “luas geladas”, conhecemos um pouco mais sobre o que essas luas precisam ter para receber essa definição (aqui) e conversamos um pouco mais sobre Europa, lua de Júpiter e uma das “luas geladas” mais famosas nos últimos anos, tanto em discussões acadêmicas como na mídia (e aqui). A parte III da nossa saga de 6 textos, ainda fala sobre as luas de Júpiter, e traz pra vocês mais informações sobre Ganimedes, Calisto e Io. Então, mãos à obra.

Pré-requistos para a existência e a manutenção da vida

Para começar, vou resgatar um trechinho do nosso primeiro texto para lembrarmos o que são as “luas geladas”. Elas são satélites naturais, cobertos principalmente por gelo, que orbitam os gigantes gasosos do nosso Sistema Solar, sendo eles Júpiter, Saturno, Urano e Netuno. Para que recebam esta nomenclatura é necessário que as “luas geladas” apresentem três pré-requisitos, sendo eles: a presença de um meio líquido, de uma fonte de energia e de condições necessárias para a formação de moléculas complexas. Esses também são considerados responsáveis pelo surgimento e pela manutenção da vida.

Viajando por Ganimedes

Ótimo! Agora que já lembramos o que esses satélites têm em comum, vamos então para os escolhidos de hoje. Ganimedes, a maior lua de Júpiter e do nosso Sistema Solar, é a segunda lua jupteriana de maior interesse para a astrobiologia no que se refere à busca de vida fora da Terra. Maior do que o planeta Mercúrio, Ganimedes é formada por partes iguais de material rochoso e água. Acredita-se que ela possua um oceano líquido sob a sua superfície, porém, muito tem se debatido se esse oceano estaria ou não em contato com o manto rochoso da lua ou se estaria isolado por uma camada rígida de gelo. Como a ciência não é algo que traz verdades absolutas e sim hipóteses e teorias que melhores descrevem os fenômenos que observamos, muita coisa interessante ainda pode surgir sobre essa lua.

Ainda assim, mesmo considerando essas discussões sobre a exata localização do oceano de Ganimedes, essa lua já se encontrava próxima à Europa no que se diz respeito a sua possibilidade de abrigar de vida. Um dos argumentos mais fortes que suportam essa ideia, é de que Ganimedes seja um satélite com fontes de energia e indícios de química complexa. Dessa forma, se o contato entre o oceano líquido e o manto (que possibilita trocas e fornece as condições necessárias para a formação de moléculas complexas) for confirmado, Ganimedes será consolidada como um dos ambientes mais propícios para o surgimento da vida em nosso Sistema Solar, equiparada com Europa.

35295398_2099136773687527_2487567894460760064_n.jpg

Figura 1. Visão global de Ganimedes. Créditos: Nasa/JPL.

Nessa lua então, acreditamos que os três pré-requisitos de ouro sejam: (1) água existente na forma líquida, encontrada em seu oceano interno; (2) força de maré originada no oceano interno da lua, decaimento radioativo de seu núcleo, e possivelmente também proveniente da radiação ionizante dos anéis radioativos de Júpiter, assim como ocorre em Europa; (3) provável interação água líquida-manto rochoso e a interessante reciclagem de sua superfície através do seu ativo ciclo geoquímico.

Um rápido pulo em Calisto e Io

E os interesses pelas luas de Júpiter não param por aí. Calisto e Io, ainda que em proporções menores quando comparadas às demais “luas geladas” que conversamos, são satélites interessantes para a ciência no que se trata da procura de vida fora da Terra. Calisto, a lua mais distante de Júpiter pode possuir um oceano líquido em seu interior, porém, devido a sua superfície ser bastante antiga e pouco diferenciada, acredita-se que pouca atividade geológica ocorra por lá, o que acarretaria em uma menor disponibilidade de energia (Figura 2).

35239028_2099136820354189_1286176756205617152_n.jpg

Figura 2. Visão global de Calisto. Créditos: Nasa/JPL.

Io, a quarta maior lua do Sistema Solar e a “lua gelada” mais próxima de Júpiter, ao contrário de Calisto, possui energia abundante (Figura 3). Contando com mais de 400 vulcões ativos, Io é considerado o objeto com maior atividade geológica do Sistema Solar. Porém, a lua possui pouca água e pouco carbono disponíveis, o que torna a existência de vida como a que conhecemos na Terra, pouco provável. Ainda sim, essas luas são consideradas bem mais prováveis para a existência de vida quando comparadas ao Sol, a lua da Terra e os planetas gigantes gasosos, por exemplo, ainda permanecendo interessantes para os astrobiólogos.

35356733_2099136863687518_2088899542463283200_n.jpg

Figura 3. Visão global de Io. Créditos: Nasa/JPL.

Como conversamos no primeiro texto, o interesse por essas luas é tão grande que grandes empresas de exploração espacial já estão preparando missões para entendê-las melhor. A missão programada pela ESA, a JUICE, (acrônimo em inglês para “The JUpiter ICy moons Explorer”, em português “Explorador das Luas Geladas de Júpiter”), tem lançamento previsto para 2022 e chegada em Júpiter em 2030. Um de seus principais objetivos será responder questões sobre o funcionamento do Sistema Solar e as condições para a formação de planetas e para a emergência da vida. Embora esta missão tenha a lua Ganimedes como foco de trabalho, Calisto e Europa também serão estudados a fim de facilitar o entendimento sobre a emergência de mundos habitáveis formados ao redor de gigantes gasosos.

Por hoje é isso! Nos próximos textos, vou contar um pouco mais pra você sobre as luas dos outros gigantes que ainda não abordamos para que juntas, possamos compreender um pouco mais sobre a nossa vizinhança cósmica.

Referências

CANUP, R. M.; WARD, W. R. Formation of the gallilean satellites: conditions of accretions. The Astronomical Journal, v. 124, n. 6, p. 3404-3423, 2002.

ESA. JUICE.

GALANTE, D. et al. Astrobiologia [livro eletrônico]: uma ciência emergente. Tikinet Edição: IAG/USP, São Paulo, 2016.

IRWIN, L. N.; SCHULZE-MAKUCH, D. Assessing the plausibility of life on other worlds. Astrobiology, v. 1, n. 2, p.143-160, 2001.

PASACHOFF, Jay M.; FILIPPENKO, Alex. The Cosmos: Astronomy in the new millennium. Cambridge University Press, 2013.

SCHUBERT, G. et al. Interior composition, structure and dynamics of the Galilean satellites. Jupiter: The planet, satellites and magnetosphere, v. 1, 2004.

SHOWMAN, A. P.; MALHOTRA, R. The Galilean satellites. Science, v. 286, p. 77-84, 1999.

1

A Terra já foi plana?

Quando falamos do movimento dos terraplanistas não estamos falando de pessoas que trabalham na construção civil deixando áreas de terra muito íngremes mais planas para que a construção seja possível naquele local. Infelizmente. Quem dera. Ô vontade.

O movimento da Terra plana acredita que o nosso planeta, na verdade, não possuiu uma forma parecida com uma esfera e sim com um plano, como um grande disco de vinil ou um imenso biscoito Chocolícia e que, na verdade, a Lei da Gravidade e outras leis das física seriam inválidas.

Bom, parece apenas bem doido, não é? Para os fãs de Harry Potter, parece apenas uma teoria absurda que o Xenofílio Lovegood, pai da querida Luna Lovegood, publicou no Pasquim.

Aí você me diz “ué, qual o problema? Deixa as pessoas acreditarem no que elas querem”.

O problema é que esse movimento vem ganhando adeptos no mundo todo e realizando, inclusive, congressos sobre a “ciência” (??????) da Terra Plana. E no meio desse movimento, que além de tudo tem um profundo e perigoso viés religioso, existem pais de alunos que esperam que a Terra Plana faça parte do currículo escolar de seus filhos e não os estudos geográficos e físicos modernos. E esse tipo de movimento pode ficar tão grande quanto a movimentação de pais americanos que conseguiram o direito dos seus filhos aprenderem criacionismo na escola.

1

Para os terraplanistas, o planeta seria um disco e o céu, uma cúpula em formato circular | Ilustração: Raphael Salimena . Crédito: BBC

Um estudo feito em 2017, pela doutora em educação Hanny Angeles Gomide, com alunos de 6° ano do ensino fundamental da cidade de Uberlândia em Minas Gerais, mostrou que 38,8% dos estudantes acreditavam em uma ideia de Terra plana. Quando questionados sobre as razões por trás dessa crença, simplesmente responderam “porque eu acho que é assim”.

Vocês entenderam o perigo?

Mas, pra tirar o gosto de barata da boca, Hanny observou no artigo que:

Naquilo que se relaciona aos demais astros, os participantes possuem um consenso de que o Sol é redondo. Muitos atribuem tal forma ao astro, por ser esta a configuração com que ele se mostra no céu, como é o caso de Márcio, que diz que o astro rei “é redondo por que já viu… em casa de olhar para o céu”. Já Emília observou que o Sol é redondo, “porque já viu nos livros de Ciências e porque também ele é a maior estrela do Universo”.

A simples condição de observação do Sol, seja ao vivo ou em livros de ciência, muda completamente a percepção dos estudantes sobre o fato. Inclusive, os próprios terraplanistas garantem que o Sol e a Lua são esféricos.

Nós podemos olhar para o Sol, Lua e estrelas mas, infelizmente,  como estamos sobre a superfície terrestre, não podemos olhar pra Terra e ter 100% de certeza que ela é plana através de uma observação puramente ocular. Apesar de existirem MILHÕES de fotografias, vídeos, imagens de satélite, leis da física, músicas de sertanejo universitário etc. que mostram que a Terra é plana, o desconfiar é da natureza humana.

E como este é um ambiente de ciência e ambiente de ciência é ambiente de referência científica, venho trazer um dos últimos gritos da ciência em matéria de Terra Esférica.

O texto da tese da doutora em física Anna Miotello, fala sobre os discos protoplanetários, que são estruturas achatadas que giram ao redor de estrelas jovens e são feitas de gás e poeira. Estes são os locais onde os planetas, como a nossa própria Terra, são formados.

Ou seja: nossa Terra já foi plana. Já foi. Passado do verbo ser. Significa que não é mais. Já tem uns 5 bilhões de anos que não é mais. Mais tempo do que você ligou da última vez pra sua avó.

Neste estudo, Miotello explica que a formação de estrelas e planetas começa com a formação de estruturas filamentares dentro de nuvens moleculares gigantes. Dentro desses longos filamentos, tipicamente são criadas dezenas de fibras menores que eventualmente se fragmentam em núcleos densos. Estes núcleos vão se colapsar para formar uma ou mais estrelas. À medida que o colapso prossegue, forma-se uma estrutura em forma de disco rotativo, através da qual a matéria se acumula na protoestrela ou protoplaneta, como podemos ver na figura abaixo.

2

Esboço do processo de formação de estrelas e planetas de forma isolada. As classes evolutivas diferentes são esboçados de forma esquemática. [MIOTELLO, 2017]

A partir daí, uma série de eventos se desenrola e estes núcleos densos começam a atrair outras partículas e assim nascem os planetas e estrelas.

Então, meus queridos, apesar desse planeta já ter sido um grande biscoito (ou bolacha, como você preferir) hoje sabemos que não somos mais assim. E se alguém vier com essas ideias de Terra plana, você pega os seus dedinhos e faz assim pra pseudociência.

3

Referências

  1. GOMIDE, Hanny Angeles; LONGHINI, Marcos Daniel. MODELOS MENTAIS DE ESTUDANTES DOS ANOS INICIAIS DO ENSINO FUNDAMENTAL SOBRE O DIA E A NOITE: UM ESTUDO SOB DIFERENTES REFERENCIAIS. Revista Latino-Americana de Educação em Astronomia, n. 24, p. 45-68, 2017.
  1. MIOTELLO, Anna et al. The puzzle of protoplanetary disk masses. 2018. Tese de Doutorado.

 

0

Alquimia do universo: como produzir elementos químicos – Parte II

alquimia_do_universo_parte_ii_imagem_destacada

Figura 1:  Estrela Sh2-106. Imagem do Telescópio Espacial Hubble da NASA/ESA mostrando a estrela recém-formada Sh 2-106. Crédito: NASA/ESA

Continuamos a nossa série “Alquimia do universo” que começou aqui falando sobre os elementos criados durante o Big Bang. O evento que deu origem ao universo produziu a maior parte do hidrogênio e do hélio que existe! Isso não é pouca coisa quando consideramos que aproximadamente 98% de toda a matéria comum (bariônica) que forma você, as árvores, a Terra, o Sol é composta por hidrogênio e hélio.

Tudo muito bom e muito bonito mas hoje nós vamos falar das estrelas! ⭐ Antes de nós passarmos para nosso bate-bola estelar (e não, não vamos falar de falar de futebol 🤣), vamos falar sobre o que são estrelas.

Vídeo 1: SN 2006gy, uma estrela explodindo. Simulação de uma estrela extremamente massiva lançando algumas de suas camadas externas em uma grande erupção antes de colapsar violentamente. A explosão (do tipo supernova) por sua vez entra no gás expelido (em cor acobreada), que se encontra numa temperatura mais fria, criando um espetáculo de luz brilhante. Créditos: NASA/CXC/A.Jubett.]

Estrelas são bolas de gás e poeira com a particularidade que elas conseguiram juntar tanto gás e tanta poeira (graças à força gravitacional) que o núcleo dessas bolas esquentou, e esquentou, até atingir uma temperatura em torno de 4 milhões de Kelvins! Isso é tipo um cadinho menos que 4 milhões de graus Celsius! 🔥😵🔥 Essa temperatura é especial porque significa que agora a nossa “bolinha de poeira” tem energia suficiente para fusionar os núcleos de hidrogênio originando novos núcleos de hélio. E isso acontece bilhões de vezes por segundo, e cada fusão desse tipo gera mais energia, numa cadeia de inúmeras explosões atômicas. É essa energia liberada no processo de fusão que transforma a ex-bola de gás numa bola de gás incandescente: uma estrela.

Vídeo 2: Simulação sobre a formação estelar. O início da simulação parte de uma nuvem molecular distribuída esfericamente que, graças ao efeito da gravidade, começa a colapsar até eventualmente originar estrelas. Créditos: Youtube/Francis Villatoro.

Durante esse período no qual a estrela transforma o hidrogênio presente em seu núcleo em hélio, dizemos que a estrela está na sequência principal de sua evolução estelar. E essa também corresponde a maior fase da vida de uma estrela, como se fosse sua vida adulta.

Se você quer entender melhor como estrela evoluem, dá uma olhada nessa simulação maneiríssima onde você mesma, pessoa, escolhe o tamanho da sua estrela. Tá em português!

 

Só para dar uma ideia..
uma estrela como o nosso Sol demorou 50 milhões de anos para juntar energia suficiente antes de começar a fusionar hidrogênio. Ela está na sequência principal (fase adulta) há aproximadamente 5 bilhões de anos e assim vai permanecer por mais uns 5 bilhões de anos.🌞

 

Depois que a estrela queima o hidrogênio do seu núcleo, os eventos seguintes dependem da massa da estrela. Estrelas entre 0,08 até ~8 massas solares são consideradas estrelas de baixa massa. E estrelas superiores a 8 massas solares estão na categoria de estrelas massivas. A estrela mais massiva observada até hoje tem 265 vezes a massa do Sol, mas estima-se que no começo de sua fase na sequência principal sua massa foi de 320 vezes a massa do Sol! 🤯

Talvez você esteja pensando que estrelas de massivas “vivam” mais do que estrela com menos massa, mas é o contrário. A força gravitacional das estrelas massivas é maior do que as com menos massa. Por isso, a pressão do seu núcleo é muito maior, o que eleva ainda mais a temperatura, fazendo com que queimem o seu hidrogênio muito mais rápido do que estrelas menos massivas. Uma estrela com baixa massa fica na sequência principal por dezenas de bilhões de anos, enquanto estrelas massivas “apenas” por centenas de milhões de anos. Fala sério, vai me dizer que não bateu um alívio do Sol ser do time das baixinhas agora! 

 

Voltando ao assunto, depois que a estrela queima o hidrogênio do núcleo, ela passa a queimar outros elementos (ou o hidrogênio de camadas fora do núcleo), desde que ela atinja a energia de fusão desses outros elementos químicos. E, como você pode imaginar pelo papo que tivemos até aqui, quanto maior a massa da estrela, maior a temperatura que ela pode atingir. Então, quanto mais massiva, mais elementos químicos ela produz.

Sendo assim, estrelas de baixa massa têm energia suficiente para produzir carbono, nitrogênio e oxigênio. Estrelas massivas produzem esses elementos e continuam colapsando e subindo a temperatura de seus núcleos produzindo, subsequentemente, elementos químicos até chegar ao Ferro. Dá uma olha na tabela periódica a seguir para conferir os elementos.

Figura 2: Tabela periódica com elementos produzidos na natureza e legenda representando os eventos que os produzem. Em azul, nucleossíntese do Big Bang; em verde, a morte de estrelas de baixa massa; em rosa, fissão de raios cósmicos; em dourado, explosão de estrelas massivas; em roxo, colisão de estrelas de nêutrons; e em cinza, explosão de anãs brancas. Créditos: Wikipedia/Jennifer Johnson (OSU).

 

E agora vamos ao nosso bate-bola!

Evento: Nucleossíntese estelar

Quando acontece

Dentro das estrelas, durante a fase principal da vida das estrelas e depois em sucessivos processos anteriores a sua morte.

O que é 

As estrelas fundem elementos químicos através de fusão nuclear de forma a manterem sua estabilidade hidrostática: o equilíbrio entre a força gravitacional gerada pelo efeito sua própria massa (pressão “para dentro” da estrela) contra a radiação eletromagnética produzida durante a fusão dos elementos (pressão “para fora” da estrela).

O que é produzido

Desde do hélio-4, a partir do fusão dos núcleos de hidrogênio, até o oxigênio-16 em estrelas de baixa massa. Em estrelas massivas são produzidos elementos desde o hélio-4 até o ferro-56. Veja na tabela periódica a seguir os outros elementos químicos.

Escala de energia
  • o hélio-4 é produzido a temperaturas de 4 milhões de Kelvins;
  • o oxigênio-16 a 2 bilhões de Kelvins;
  • e o ferro-56 a 3 bilhões de Kelvins.
Em quanto tempo são produzidos
  • todo o hélio-4 é produzido em dezenas de milhões de anos;
  • a produção de oxigênio-16 em menos de 1 ano;
  • e, por fim, todo o ferro-56 em menos de 1 segundo!!!
Com que frequência ocorre 

Isso está acontecendo desde que o universo tinha aproximadamente 100 milhões de anos. Hoje, estima-se que o universo tem mais ou menos 14 bilhões de anos e em torno de 2 trilhões de galáxias. E cada galáxia tem em torno de 100 milhões de estrelas, das quais 90% estão na fase de transformar hidrogênio em hélio e as outras 10% estão produzindo outras coisas. Vou deixar para você contar quantas estrelas estão queimando hidrogênio nesse exato instante 😉

Os dados desse bate-bola foram retirados dessa aula super legal do Dr. Dmitry Semenov, Instituto de Astronomia Max Planck, na Alemanha.

 

Espero que você esteja pensando “tá legal, mas perá lá! E o que acontece depois disso? Como é que a estrela libera tudo isso no espaço? Cadê estrela de nêutrons, buracos negros e supernovas? Falta coisa aí!”. E você está certíssima, pessoa! E esse será o tema do nosso próximo papo: os elementos químicos produzidos na morte das estrelas. ⭐💥💀💫

Vídeo 3: Animação da formação de uma nebulosa planetária. Ao contrário do que o nome sugere nebulosas planetárias não dão origem a planetas. Elas são a sopa quente e poderosa de elementos químicos formadas após a explosão de anã branca. 🤩 Esse é tipo o de fim de vida que nosso Sol vai levar. 💥 Créditos: NASA/ESA/J.Gitlin(STScI).

0

Resultados Recentes da Missão Juno

A sonda Juno, lançada pela NASA em 2011, tem como objetivo estudar profundamente o maior planeta do Sistema Solar, Júpiter. Aspectos como campo gravitacional, campo magnético e a composição do núcleo do planeta são alguns dos mistérios que Juno poderia ajudar a desvendar.

perijove_8_overview-opt
Figura 1: 95 Minutos Sobre Júpiter. Fonte: https://www.nasa.gov/mission_pages/juno/images/index.html

Na mitologia Juno é a esposa do deus Júpiter e muitas brincadeiras foram feitas em relação a sonda, visto que muitos satélites de Júpiter, como Europa, Calisto e Io têm nomes de amantes de Júpiter.

Juno entrou na órbita de Júpiter em meados de 2016, e já estamos colhendo os frutos da missão. Quatro artigos sobre os resultados de Juno foram publicados na edição de 8 de março da revista Nature.

Entre as descobertas, divulgou-se que as famosas faixas atmosféricas de Júpiter, já conhecida desde Galileu Galilei, seriam mais profundas do que se imaginava. A superfície visível de Júpiter é dividida em um número de bandas paralelas com o equador. Existem dois tipos de bandas: “zonas”, que possuem uma cor clara, e “cinturões”, bandas de cor mais escura. A diferença na aparência entre zonas e cinturões é causada por diferenças na opacidade das nuvens. As bandas de Júpiter são limitadas por fluxos atmosféricos zonais chamados “jatos”. Os fluxos atmosféricos (ventos) do planeta gigante se estendem profundamente em sua atmosfera e duram mais do que os processos atmosféricos similares encontrados aqui na Terra.

Os jatos penetrariam cerca de 3.000 quilômetros de profundidade e conteriam uma massa equivalente a três Terras, cerca de 1% da massa de Júpiter. Em contraste, a atmosfera da Terra tem menos de um milionésimo da massa total da Terra.

A sonda Juno tem fornecido uma imagem em 3D desses fluxos. Como os ventos de Júpiter podem chegar a cerca de 360 km/h, isso perturba a massa espalhada pelo planeta. Portanto, o mapeamento do campo gravitacional de Júpiter pode esclarecer o quão profundo essas faixas se estendem abaixo da superfície. Quanto mais profundos os jatos, mais massa eles contêm, levando a um sinal mais forte do campo gravitacional. Assim, a magnitude da assimetria na gravidade determina a extensão das correntes de jato.

 

pia21970-opt

Figura 2: Hemisfério Sul de Júpiter. Fonte: https://www.nasa.gov/mission_pages/juno/images/index.html

Outro resultado interessante é que sob a camada climática Júpiter giraria quase como um corpo rígido e não como um fluído como esperávamos para um planeta gasoso. Isso ocorre porque as altas pressões encontradas no planeta geram forças que impedem os ventos de fluirem em direções opostas.

Já os pólos de Júpiter são um contraste gritante com os cinturões e zonas que circundam o planeta em latitudes mais baixas. Seu pólo norte é dominado por um ciclone central cercado por oito ciclones circumpolares com diâmetros que variam de 4.000 a 4.600 quilômetros de diâmetro. O pólo sul de Júpiter também contém um ciclone central, mas é cercado por cinco ciclones com diâmetros que variam de 5.600 a 7.000 quilômetros de diâmetro.

pia21978-opt

Figura 3: Formações de Nuvem em Júpiter. Fonte: https://www.nasa.gov/mission_pages/juno/images/index.html

A sonda Juno tem feito um ótimo trabalho possibilitando descobertas fantásticas, podendo até colaborar para desvendar os mistérios da formação planetária. Além disso, Juno tem nos fornecido belíssimas imagens, como podemos ver no decorrer do texto.

Referências:

[1] Ingersoll, A.P.; Dowling, T.E.; Gierasch, P.J.; et al. (2004). “Dynamics of Jupiter’s Atmosphere”. In Bagenal, F.; Dowling, T.E.; McKinnon, W.B.Jupiter: The Planet, Satellites and Magnetosphere.

[2]L. Iess, et al., “The measurement of Jupiter’s asymmetric gravity field,” Nature volume 555, pages 220–222 (08 March 2018).

[3] Y. Kaspi, et al., “Jupiter’s atmospheric jet-streams extending thousands of kilometers deep,” Nature volume 555, pages 223–226 (08 March 2018).

[4] T. Guillot, et al., “A suppression of differential rotation in Jupiter’s deep interior,” Nature volume 555, pages 227–230 (08 March 2018).

[5] A. Adriani, et al., “Clusters of Cyclones Encircling Jupiter’s Poles,” Nature volume 555, pages 216–219 (08 March 2018).

 

 

 

0

As luas geladas e suas implicações para a astrobiologia: Conheça Europa

Parte II

No primeiro texto dessa incrível série que fala das “luas geladas”, conhecemos um pouco mais sobre o que são essas luas, o que elas precisam ter para receber essa definição e falamos brevemente sobre Europa e sobre algumas missões espaciais que estão por vir. Quem quiser relembrar da primeira parte da nossa jornada, é só clicar aqui. A parte II da nossa saga, que ainda fala das luas de Júpiter, agora foca em Europa.

Características indispensáveis para que a vida possa existir e ser mantida:

Antes de falar desse satélite, gostaria resgatar um pedacinho do nosso primeiro texto para lembrarmos o que essas luas precisam ter para serem consideradas “luas geladas”. Para receberem esse título, os satélites naturais, cobertos principalmente por gelo, que orbitam os gigantes gasosos do nosso Sistema Solar precisam apresentar os três seguintes pré-requisitos:

  • um meio líquido,
  • uma fonte de energia e
  • condições necessárias para a formação de moléculas complexas responsáveis pelo surgimento e pela manutenção da vida.

Uma viagem por Europa

Feito! Com isso em mente, vamos focar na nossa lua principal, Europa, e entender com um pouco mais de detalhes como encontramos esses três pré-requisitos.

  1. Presença de meio líquido:

Sendo a menor das quatro “luas geladas” de Júpiter, Europa é formada por um núcleo metálico envolto por uma crosta, ambos localizados abaixo de uma camada de água (na forma líquida e de gelo). Estima-se que essa camada de água tenha de 80 a 170 quilômetros de extensão, sendo composta de uma crosta congelada localizada logo acima de um oceano líquido. A existência de um oceano global abaixo de sua crosta de gelo é o elemento mais importante para a habitabilidade de Europa e seu estudo é de grande interesse para determinar se a vida foi ou é capaz de surgir e de se manter na lua.

  1. Fonte de energia:

A superfície de Europa é plana e recente, com poucas crateras antigas, o que indica que é renovada constantemente. Podemos assumir que exista essa renovação constante devido ao fato de que a lua está submetida a constantes bombardeamentos, e que, se não há crateras antigas expostas, deve haver uma renovação da superfície para que ela esteja sempre lisa. Os processos responsáveis por essa renovação seriam inúmeros, dentre eles: erupções locais de água aquecida e sob pressão; elevação e submersão de sólidos congelados e líquidos em algumas regiões; rupturas de camadas superficiais de gelo, etc.

Outra característica importante de Europa, que também remete a renovação da superfície é a existência de uma variedade de linhas escuras que cruzam sua superfície (Figura 1). Dentre as possíveis hipóteses que tentam explicar esse padrão, a mais aceita diz que essas linhas devem ter sido formadas por uma série de erupções de gelo aquecido ao passo que a crosta da lua se abria para expor camadas interiores mais quentes. Uma possível explicação para o surgimento de suas linhas antigas torna Europa ainda mais interessante. Imagens provenientes das sondas Voyager e Galileo revelaram evidências de processos geológicos tais quais os que ocorrem aqui na Terra em regiões de convergência de placas tectônicas, quando uma placa se desloca para baixo de outra. A existência dessas placas em Europa faria dela o único corpo celeste que possui placas tectônicas além da Terra.

Figura 1_Europa.jpg

Figura 1. Superfície de Europa. As linhas que cobrem sua superfície tiveram a coloração adicionada para que ficassem mais visíveis. Fonte: Nasa/JPL-Caltech/SETI Institute.

Outro fator interessante é em relação à sua atmosfera. Observações realizadas pelo Hubble revelaram que a atmosfera fina de Europa é composta principalmente por oxigênio molecular (em sua camada interior) e hidrogênio molecular (em sua camada exterior). Infelizmente, para astrobiólogos, esse oxigênio não indica atividade biológica, sendo proveniente da quebra da molécula de água na superfície da lua. Essa quebra é ocasionada pela radiação ultravioleta do Sol e por partículas carregadas da magnetosfera de Júpiter (íons e elétrons). Dessa forma, podemos então encontrar as principais fontes de energia nessa lua, sendo elas a energia do núcleo metálico (decaimento radioativo dos elementos), da força das marés (do oceano interno), e da radiação de Júpiter.

  1. Condições necessárias para a formação de moléculas complexas

Considerando que Europa tenha uma origem condrítica (formada de poeira e pequenos grãos presentes no início do Sistema Solar) e levando em consideração o contexto de intenso bombardeamento no qual está inserida, a lua teria uma variedade de compostos essenciais para a vida semelhante tal qual como conhecemos na Terra. Adicionalmente, atividades hidrotermais, se constatadas como presentes, transportariam esses elementos do manto para os oceanos, fazendo com dessa interação oceano-rocha, um componente de extrema relevância para a formação de moléculas complexas e do desenvolvimento da vida.

Portanto, até agora, temos Europa preenchendo os nossos 3 pré-requisitos: 1) existência de um meio líquido: água na forma de gelo na crosta de Europa e na forma líquida, encontrada em seu oceano interno; (2) fonte de energia: força de maré originada no oceano interno da lua, decaimento radioativo de seu núcleo metálico, e possivelmente também proveniente da radiação ionizante dos anéis radioativos de Júpiter; (3) condições necessárias para a formação de moléculas complexas: provável interação água líquida-rocha no leito oceânico da lua e possível origem exógena (de fontes externas à lua), devido ao intenso contexto de bombardeamento em que Europa está inserida.

Somado à esses pré-requisitos modelos atuais de Europa sugerem que condições como temperatura, pressão, pH e salinidade dos oceanos internos estão dentro dos limites capazes de suportar vida como conhecemos. Além disso, as informações atuais sobre a lua indicam que Europa não só pode ser habitável  nos dias atuais como provavelmente foi assim durante a maior parte da história do nosso Sistema Solar. Daí o extremo interesse em estudar essa lua e a necessidade da criação de missões de exploração,que serão abordadas em mais detalhes em no nosso último texto dessa série. Futuras observações, particularmente aquelas realizadas através de pousos na sua superfície e coleta de material, permitirão análises não apenas qualitativas, mas também quantitativas sobre o potencial habitável de Europa, especialmente quanto às fontes de energia disponíveis e evolução química de seu oceano.

É fascinante entender o quão importante algumas das luas do Sistema Solar podem ser na busca pela vida fora do nosso planeta. Espero que tenham gostado de conhecer um pouco mais sobre Europa e que estejam ansiosas para saber mais sobre a nossa vizinhança cósmica. No próximo texto, ainda estaremos em Júpiter, mas vamos viajar por outras de suas luas, também incríveis e de amplo interesse astrobiológico: Ganimedes, Calisto e Io.

Referências:

ANDERSON, J. D. et al. Europa’s differentiated internal structure: Inferences from four Galileo encounters. Science, v. 281, n. 5385, p. 2019-2022, 1998.

CANUP, R. M.; WARD, W. R. Formation of the gallilean satellites: conditions of accretions. The Astronomical Journal, v. 124, n. 6, p. 3404-3423, 2002.

CARR, M. H. et al. Evidence for a subsurface ocean on Europa. Nature, v. 391, n. 6665, p. 363-365, 1998.

CHYBA, C. F. Energy for microbial life on Europa. Nature, v. 403, n. 6768, p. 381-382, 2000.

FIGUEREDO, P. H.; GREELEY, R. Resurfacing history of Europa from pole- -to-pole geological mapping. Icarus, v. 167, p. 287-312, 2004.

GALANTE, D. et al. Astrobiologia [livro eletrônico]: uma ciência emergente. Tikinet Edição: IAG/USP, São Paulo, 2016.

IRWIN, L. N.; SCHULZE-MAKUCH, D. Assessing the plausibility of life on other worlds. Astrobiology, v. 1, n. 2, p.143-160, 2001.

KARGEL, J. S. et al. Europa’s crust and ocean: origin, composition and the prospects for life. Icarus, v. 148, 39, 2000.

MCKINNON, W. B.; ZOLENSKY, M. E. Sulfate content of Europa’s ocean and shell: Evolutionary considerations and some geological and astrobiological implications. Astrobiology, v. 3, n. 4, p. 879-897, 2003.

PARANICAS, C.; CARLSON, R. W.; JOHNSON, R. E. Electron bombardment of Europa. Geophys. Res. Lett, v. 28, n. 4, p. 673-676, 2001.

PASACHOFF, Jay M.; FILIPPENKO, Alex. The Cosmos: Astronomy in the new millennium. Cambridge University Press, 2013.

SCHUBERT, G. et al. Interior composition, structure and dynamics of the Galilean satellites. Jupiter: The planet, satellites and magnetosphere, v. 1, 2004.

SHOWMAN, A. P.; MALHOTRA, R. The Galilean satellites. Science, v. 286, p. 77-84, 1999.

WORTH, R. J.; SIGURDSSON, S.; HOUSE, C. H. Seeding life on the moons of the outer planets via lithopanspermia. Astrobiology, v. 13, p. 1155-1165, 2013.

ZOLOTOV, Mikhail Y.; SHOCK, Everett L. Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa. Journal of Geophysical Research: Planets, v. 108, n. E4, 2003.