Para melhores dias, mude a sua energia!

Energia é o combustível do universo, sabe-se que é através dela que tudo se transforma, de forma física aos materialistas e de forma espiritual para os mais esotéricos. Ela se faz tão presente a todos os instantes que poucos param para pensar se as energias que nos rodeiam são transformadas de forma mais sustentável, ou não. Muitos focam bastante em como é administrado o dia a dia e “gasta-se” essa energia: ter uma alimentação saudável, beber bastante água, praticar exercícios, enfim, manter mente e corpo saudável. Já a energia que chega nas tomadas é simplesmente aceita. Todo mês vem a conta e as pessoas se limitam a questionar o quanto foi gasto, e não como está sendo produzido. O Brasil, por ser um país continental, possui uma malha energética complexa composta de energias renováveis e não renováveis. Considera-se energia renovável aquela que não produz resíduos na sua geração, e não o impacto de instalação considerado. Assim o país computa uma malha onde mais de 85% de energia é renovável por conta de uma característica muito particular que é a presença da hidrelétricas, conforme observada na figura 1.

Figura 1- Distribuição da Energia Interna do Brasil em 2019. Créditos: EPE (2019).

Segundo a Empresa de Pesquisa Energética – EPE (BRASIL, 2019), o país produziu nesse ano 651,3 TWh de energia no total. As fontes limpas que comp~eo 85% desse valor são eólica, biomassa, solar, nuclear e hidrelétrica. Um comparativo feito pela Empresa de Pesquisa Energética para o ano de 2016 compara a geração renovável da Matriz Energética Elétrica do Brasil  com todo o mundo.

Figura 2 – Comparação de energia elétrica renovável e não renovável. Crédito: EPE, 2016.

Esses dados podem gerar uma certa comodidade na população vendo o quão superior na produção limpa o país é. Então por que devemos nos preocupar? E a resposta desta pergunta é simples.

Por uma característica geológica, nossa principal fonte de energia limpa vem das usinas hidrelétricas. Em comparação com outras fontes, essa era a forma menos custosa e prática para geração de energia. A ideia de preservação do meio ambiente e a não-geração de resíduos não citam o passivo das suas construções. Inclusive há controvérsias de informações, pois enquanto alguns dizem que ela é totalmente limpa, há um enorme passivo ambiental nas construções das barragens e o impacto irreversível no deslocamento das populações ribeirinhas, além de alagamentos de imensas florestas, processo de eutrofização das represas e seus efeitos sobre a qualidade da água e a emissão de carbono. (Bursztyn, 2020).

A energia hidrelétrica é limpa, porém não é infinita; dependemos dos rios e seus potenciais para que haja luz nas residências, indústrias, cidades. E nos últimos anos o país tem sofrido muito com a falta de chuva: seca de quase sete anos no Nordeste, escassez de água em São Paulo, e neste ano no estado do Paraná, local da 2ª maior usina hidrelétrica do mundo, a quantidade de chuvas foi muito abaixo do nível normal. Sem chuva não há reabastecimento nas represas que foram planejadas por séries históricas (calcula-se o período de maior seca e planeja a barragem para suprir essa deficiência). Mas se a crise hídrica atual é maior do que a para qual a usina foi calculada, ela não terá água para gerar energia. É também por isso que precisamos pensar se a energia escolhida no século passado é suficiente para suprir as demandas atual e futura.

Pensando dessa maneira devemos avaliar entre outras formas de produzir energia renovável  quais têm mais potencial para serem desenvolvidas hoje com as novas tecnologias.  Uma das respostas está, literalmente, em cima das nossas cabeças: o Sol.

Como foi visto na figura 1, o Brasil explora pouco a energia solar se comparada às demais energias instaladas e a razão é porque ela depende mais do interesse de cada consumidor do que do governo em si. Usinas solares têm valores de instalações muito elevados em comparação à eólica, por exemplo, e acaba não sendo viável para investir neste tipo de negócio a curto prazo. Mas ela pode transformar uma residência em sua própria usina, não gastando mais para ter luz. É desta maneira que 75% da geração distribuída de energia solar no país é produzida em residências (Moreira Jr. e Souza, 2018).

Uma instalação residencial traz independência da Matriz Energética, ou seja, em casos como o que ocorreu recentemente no Amapá onde o estado ficou 22 dias sem energia elétrica, quem tinha instalação de painéis fotovoltaicos não ficou sem energia.

Algumas pessoas têm dúvida com relação a capacidade de produção, pois a eficiência dos painéis raramente chega a mais de 20%. i Parece pouco, mas a energia solar é abundante e gratuita, além de não prejudicar o meio ambiente, não faltar em outro sistema, e continuar presente, se não for utilizada.

Outra dúvida frequente é a questão de instalação em locais que tem inverno mais rigoroso, com baixas temperaturas por três, quatro meses no ano. A geração de energia fotovoltaica não depende do quanto o Sol pode esquentar uma placa, e sim do uso da incidência do raio eletromagnético que transformará essa onda em energia elétrica. Um exemplo é a Alemanha que segundo Moreira Jr. e Souza (2018) recebe 40% menos incidência solar média que o lugar com incidência mais baixa no Brasil. E mesmo assim lá o investimento em geração fotovoltaica é tão estimulado que eles já detêm mais de 13% de todas as placas solares fotovoltaicas do mundo (figura 3).

Figura 3 – Painéis solares na Alemanha. Crédito: Portal solar (2017).

Usando como base a capital considerada mais fria do país durante o inverno, que é Curitiba, a radiação de plano inclinado, que é o valor usado para cálculo de capacidade de geração, é mostrada na figura 4.

Figura 4 – Incidência solar no plano inclinado em Curitiba 2019. Crédito: Atlas Solar Paraná.

            Já em Fortaleza, conhecida como a Capital da Luz, a incidência é a demonstrada na figura 5.

Figura 5 – Incidência solar no plano inclinado em Fortaleza 2019. Crédito: Cresesb.

 Apesar de haver nitidamente uma irradiação muito maior no verão na cidade nordestina do que em Curitiba, o importante é que a irradiação mínima nos dois casos não é muito diferente, indicando que, apesar do frio, a incidência solar em Curitiba continua viável para a instalação de painéis fotovoltaicos.

Aotimização das placas fotovoltaicas também depende da instalação na residência. A posição e inclinação das placas é fundamental, e para isso o local é fundamental para que o projeto seja eficiente. Posicioná-las voltadas ao Norte e na ausência de sombras são condições ideais, como mostrado na figura 6. Desta maneira a captação ocorrerá da forma mais eficiente, ou seja, aproximando daqueles 20%, falados anteriormente.

Figura 6 – Posição ideal da placa fotovoltaica. Crédito: eletronica-pt.com

       A quantidade de placas instaladas determinará o quanto de energia elétrica será produzida, se o suficiente ou maior do que a casa necessita. Para isso é interessante levantar um histórico de consumo de energia elétrica e observar qual a demanda necessária para a residência. Tendo este valor, e a área do espaço que há possibilidade de instalação, a incidência de plano inclinado e a capacidade de produção da placa por metro quadrado, conseguimos calcular quantas placas são possíveis de instalar e quanto irão produzir.

 Outra decisão importante é a escolha do sistema: on grid ou off grid (figura 7).

Figura 7- Sistema on grid e off grid. Crédito: Diamont Renewables.

       No sistema off grid a instalação é autônoma, independente da rede. A produção, consumo e armazenamento ocorre em um sistema fechado. Sistema ideal para locais remotos de difícil acesso à rede elétrica. O sistema on grid  é ligado à rede elétrica que fica com a sua produção excedente, que pode ser “devolvida” quando o seu sistema produz pouco. Essa “devolução” não envolve dinheiro, mas  funciona com um crédito energético válido por 60 meses que, dependendo do tipo de instalação, o proprietário pode consumir ou transferir para outros consumidores. Muitos usuários utilizam esse crédito para momentos em que a placa não produz, como nos períodos noturnos, geralmente momentos em que o consumo da casa é maior.

       Os custos de compra e instalação dos painéis solares fotovoltaicos estão barateando ao longo dos anos por conta do aumento da demanda. Assim o payback do investimento, ou seja, a compensação entre custo e economia que será feita, que já foi de 10 anos está atualmente em torno de 3 a 4 anos. Depois desse período o sistema gerará energia sem gerar gastos até finalizar a vida útil do equipamento que gira em torno de 25 anos, considerando que a manutenção seja realizada de forma adequada.

       A energia solar fotovoltaica além de se mostrar bastante viável no Brasil é uma forma realmente sustentável de produção: desafoga as linhas hidrelétricas e evita o uso das termelétricas, que são mais poluentes. É uma medida que não traz benefícios somente para o proprietário, mas uma ação humanitária considerando que o planeta é responsabilidade de todos nós.

       Então, quem puder, aproveite, porque o Sol é de todos.

—-

Referências

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (ANEEL). Resolução Normativa n. 687, de 24 de novembro
de 2015. Disponível em: http://www2.aneel.gov.br/cedoc/ren2015687.pdf. Acesso em: 26 nov 2020.

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (ANEEL). Resolução Normativa n. 482, de 17 de abril de 2012.
Disponível em: http://www2.aneel.gov.br/cedoc/ren2012482.pdf. Acesso em: 26 nov 2020.

BRASIL. Empresa de pesquisa energética. Balanço Covid-19 – Impactos nos mercados de energia no Brasil: 1º semestre de 2020. Disponível em: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-covid-19-impactos-nos-mercados-de-energia-no-brasil-1-semestre-de-2020. Acesso em: 26 nov 2020.

BURSZTYN, M. Energia solar e desenvolvimento sustentável no Semiárido: o desafio da integração de políticas públicas. Estudos Avançados. [online], vol.34, n.98, pp.167-186, 2020.

MOREIRA JR, O.; SOUZA, C.C. Aproveitamento fotovoltaico, análise comparativa entre Brasil e Alemanha. Revista INTERAÇÕES, Campo Grande, MS, v. 21, n. 2, p. 379-387, abr./jun. 2020.

LIRA, M.A.T.; MELO, M.L.S.; RODRIGUES, L.M.; SOUZA, T.R.M. Contribuição dos Sistemas Fotovoltaicos Conectados à Rede Elétrica para a Redução de CO2 no Estado do Ceará. Revista Brasileira de Meteorologia, v. 34, n. 3, 389 397, jun. 2019


Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Foto do Google

Você está comentando utilizando sua conta Google. Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s