CRISPR/Cas: A revolução do século está prestes a enfrentar seu maior desafio

O ano de 2012 foi o responsável por gerar, principalmente nos indivíduos que sofriam com doenças genéticas, uma grande esperança. As cientistas Emmanuelle Charpentier (https://pt.wikipedia.org/wiki/Emmanuelle_Charpentier) e Jennifer Doudna (https://pt.wikipedia.org/wiki/Jennifer_Doudna) propuseram uma técnica capaz de permitir aos humanos a capacidade de editar o DNA e corrigir erros no genoma humano, responsáveis por causarem doenças.

A técnica proposta é conhecida como CRISPR/Cas9 e é inspirada num mecanismo de defesa bacteriano (https://cientistasfeministas.wordpress.com/2017/05/11/entenda-a-nova-arma-da-engenharia-genetica-crisprcas9-e-a-polemica-envolvida/).

Essa técnica, assim como outras duas famosas estratégias com o mesmo fim, é capaz de produzir quebra nas duas fitas do DNA no local para o qual foram destinadas pelo cientista.

No sistema CRISPR/Cas a enzima Cas provoca a quebra no DNA no local em que foi posicionada por uma molécula de RNA, o RNA guia (gRNA). Ele é desenhado pelo manipulador para direcionar a enzima para o local desejado no genoma para que a edição aconteça (Figura 1).

Para corrigir a região com um erro que cause doença, o corte deve ser dirigido pelo gRNA para o local do erro, e o manipulador deve também fornecer trecho de DNA com sequência correta para substituição do trecho errado. Se o desejo for apenas de que a região seja modificada por remoção de alguns pares de bases para impedir a função de algum gene (silenciá-lo), não é necessário fornecer o trecho de DNA citado; apenas a enzima e o RNA são requeridos neste caso.

Figura 1

Figura 1: Representação esquemática da ação da ferramenta de edição sítio-dirigida de genes conhecida como CRISPR/Cas para inserir sequência correta corrigindo erro no DNA. O gRNA encontra-se em amarelo e nuclease Cas (enzima) em vermelho. Modificado de https://www.sciencedirect.com/science/article/pii/S0734975017300617?via%3Dihub.

Durante os anos de 2017 e 2018 este blog trouxe até vocês textos abordando diversos progressos científicos alcançados por meio desta tecnologia de edição (https://cientistasfeministas.wordpress.com/2017/10/30/trigo-sem-gluten-e-possivel-estamos-chegando-la/ ; https://cientistasfeministas.wordpress.com/2017/08/16/o-primeiro-embriao-humano-corrigido/ ; https://cientistasfeministas.wordpress.com/2017/06/14/celulas-tronco-geneticamente-modificadas-um-novo-tratamento-para-doencas-inflamatorias/ ) e de tecnologias de mesma finalidade (https://cientistasfeministas.wordpress.com/2018/07/04/a-era-da-edicao-de-genes-humanos-para-curar-doencas-comecou/ ).

No entanto, o grande desafio para provar que a metodologia é segura e pode realmente revolucionar a medicina está se iniciando. Doze pacientes que sofrem com anemia falciforme ou beta-talassemia participarão, até 2022, de um estudo clínico na Europa que utilizará CRISPR/Cas visando a correção do DNA dos pacientes (https://www.clinicaltrialsregister.eu/ctr-search/trial/2017-003351-38/DE).

Na Alemanha também serão realizados ensaios semelhantes por empresas com sede nos Estados Unidos: em Boston (Vertex Pharmaceuticals) e em Massachusetts (CRISPR Therapeutics).

Talassemia e anemia falciforme

Ambas as doenças estão relacionadas com produção anormal de hemoglobina: a principal proteína que existe dentro das células vermelhas do sangue e que é responsável pelo transporte de oxigênio em nosso organismo. Essa proteína no humano adulto deve possuir 4 unidades formadoras (subunidades): duas alfa e duas beta (Figura 2), uma configuração diferente da hemoglobina existente no feto (que contém duas cadeias alfa e duas gama).

Figura 2

Figura 2: Estrutura tridimensional da proteína hemoglobina humana do adulto. Fonte: PDB – 1GZX.

Nas talassemias, diferentes mutações no DNA podem levar à produção de formas erradas da subunidade alfa (alfa-talassemia) ou da subunidade beta (beta-talassemia) em diferentes proporções, acarretando diferentes graus de comprometimento da saúde do paciente (http://bvsms.saude.gov.br/bvs/folder/talassemias_folder.pdf).

Em casos mais graves o paciente pode inclusive necessitar receber transfusões de sangue para manter-se vivo.

Na anemia falciforme, (http://www.abhh.org.br/imprensa/7-verdades-sobre-anemia-falciforme/) a mutação no DNA acarreta produção de subunidade beta com defeito, que leva as células vermelhas (hemácias) a adotarem o formato de foice (Figura 3), comprometendo o transporte de oxigênio. O paciente pode sofrer com obstruções de vasos de pequeno calibre por estas células e a anemia decorrente da destruição destas células de formato atípico também pode torná-los mais propensos a infecções.

Figura 3

Figura 3: Hemácia normal e hemácia com forma de foice da anemia falciforme. Fonte: http://sites.uem.br/drgenetica/hematologia-clinica/hemoglobinopatias/anemia-falciforme

 

Terapias utilizando CRISPR/Cas

Estas terapias dos ensaios clínicos consistem em remover células-alvo dos pacientes, editar o DNA destas em laboratório e devolvê-las aos pacientes de doenças causadas por erros no genoma. Desta forma espera-se melhora no quadro do paciente, e em alguns casos, futuramente, sua cura.

O estudo das empresas americanas consiste em obter de 12 pacientes entre 18 e 35 anos que sofram de beta-talassemia e sejam dependentes de transfusão, células-tronco responsáveis pela geração de células do sangue, conhecidas como HSPCs. Em laboratório visa-se utilizar o sistema CRISPR/Cas para editar região regulatória do gene BCL11A e posteriormente devolver ao paciente, via um cateter venoso central, as células modificadas (https://clinicaltrials.gov/ct2/show/NCT03655678 ).

BCL11A está relacionado a impedir a produção de hemoglobina fetal a partir de cerca de 3 meses de idade para a produção de hemoglobinas ser apenas da versão adulta. Se este gene for silenciado, no entanto, espera-se que a produção de hemoglobina fetal possa ocorrer nos pacientes, reduzindo-se os sintomas da beta-talasssemia: visto que os pacientes poderão produzir hemoglobina fetal (que não tem cadeias beta – sítio da mutação que assola os pacientes) para realizar o transporte de oxigênio em seus organismos.

Toda a comunidade científica aguarda ansiosa pelos resultados que poderão tornar a grande promessa de cura de doenças genética através da técnica CRISPR/Cas uma realidade, postergar um pouco mais esta almejada realidade para que ajustes na técnica sejam feitos, ou invalidar este sonho.

Anúncios

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Foto do Google

Você está comentando utilizando sua conta Google. Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s