Ver, ouvir e sentir envolvem aprendizado e adaptação

Quando você olha para os dois quadros à esquerda na figura abaixo, a diferença entre eles é bem clara, certo? O de baixo tem o dobro da quantidade de pontos do de cima, no caso, dez pontos a mais. E quando você olha para os dois quadros à direita, fica tão evidente que a diferença de quantidade de pontos é também dez?

Figura 1 – Quanto menos pontinhos, mais fácil é identificar a diferença na sua quantidade (retirado de Wikimedia Commons, por MrPomidor, licença CC BY-SA 4.0).

Isso acontece porque a nossa percepção de quantidades, assim como nossas percepções de brilho, frequência e intensidade sonoras e outros fenômenos não são lineares, ou seja, o aumento na intensidade de um determinado estímulo não implica que sua percepção será proporcionalmente maior.

Nós formamos nossa noção de realidade e interagimos com o nosso ambiente e com as outras pessoas através dos nossos cinco sentidos, e todos eles estão sujeitos a essas relações não-lineares

Figura 2 – Não se preocupe, você não precisa aumentar o grau dos seus óculos.

A relação entre a diferença física entre estímulos e a diferença da forma a qual os percebemos é estudada pela psicofísica. Por abordar fenômenos físicos e sensações simultaneamente, a psicofísica é um ramo essencialmente multidisciplinar e é estudada por físicos, psicólogos e neurocientistas.

Muitas das nossas percepções de estímulos podem ser descritas pela Lei de Fechner, que é provavelmente a mais célebre equação na psicofísica.

Equação 1 – Lei de Fechner – p representa a percepção, S representa o estímulo, k é uma constante que depende do fenômeno e S0 é o estímulo mínimo necessário para que possamos percebê-lo. A relação entre o estímulo e a percepção é logarítmica (ln é um tipo de logaritmo chamado na matemática de logaritmo natural), e não linear.

Muitos destes fenômenos já são bem conhecidos, mas alguns ainda estão sendo investigados pelos cientistas. Saindo um pouco do campo dos estímulos que podem ser simplesmente aumentados ou diminuídos, ainda existem inúmeros tipos de informação que somos capazes de processar em nosso cérebro que vão muito além da mera “decodificação” dos estímulos físicos, e que envolvem níveis de cognição altamente sofisticados. É sabido que nosso cérebro é capaz de se adaptar a mudanças até mesmo estruturais nos órgãos sensoriais quando se trata de interpretar a informação que recebemos através de nossos sentidos.

Um clássico exemplo é o experimento dos austríacos Erismann e Kohler, realizado em 1950. Após alguns dias seguidos utilizando um óculos que deixa a imagem de ponta-cabeça, Kohler, que foi o voluntário do experimento, foi capaz de andar, tocar objetos e até mesmo andar de bicicleta como se nada estivesse acontecendo. Algumas das imagens podem ser vistas neste documentário.

Nosso cérebro também é capaz de se adaptar à mudanças no formato da nossa orelha. Os cientistas Régis Trapeau e Marc Schönwiesner demonstraram, após alterarem o formato das orelhas de participantes do estudo através do uso de moldes de silicone (o que a princípio afetou suas habilidades de distinguir de que direção os sons vinham), que após algum tempo de adaptação os voluntários re-aprenderam a interpretar a direcionalidade dos estímulos mesmo com a “nova orelha”.

Da mesma forma, a forma como seguramos objetos depende de estimativas que fazemos inconscientemente, baseados em informações sensoriais sobre eles, e conforme adquirimos experiência com um determinado objeto, refinamos nosso aprendizado sobre suas propriedades físicas, de forma a saber melhor qual a forma mais adequada de manuseá-lo.

Ainda há muito a ser investigado sobre como processamos as informações ao nosso redor e o quanto conseguimos aprender a interpretar sinais de formas diferentes. Mas está cada vez mais claro que os atos de enxergar, escutar e sentir não são atividades “passivas”, e envolvem muitos processos complexos e sofisticados em nossos cérebros.

Referências:

[1] Wikipedia – Weber–Fechner law. Disponível aqui.

[2] Régis Trapeau, Marc Schönwiesner.The encoding of sound source elevation in the human auditory cortex. Journal of Neuroscience 5 March 2018, 2530-17. Disponível aqui.

[3] Artigo “How the Shape of Your Ears Affects What You Hear” de Veronique Greenwood para o New York Times. Disponível aqui.

[4] Reza Shadmehr. Learning to Predict and Control the Physics of Our Movements. Journal of Neuroscience 15 February 2017, 37 (7) 1663-1671. Disponível aqui.

Anúncios

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Foto do Google

Você está comentando utilizando sua conta Google. Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s