Um ponto ótimo para as oscilações neuronais

Considerando o senso comum, parece que quanto mais bagunça adicionamos a um sistema, mais difícil a transmissão de informação através dele. Por exemplo, em uma sala silenciosa você poderia facilmente conversar com uma amiga a dois metros de distância de você. Mas se aos poucos vão chegando outras pessoas na sala, e estas pessoas estão conversando entre si, é fácil imaginar que vai ficando cada vez mais difícil entender o que sua amiga fala. Ou seja, quanto maior o barulho (ou ruído) na sala, mais difícil mantermos a comunicação. No entanto, essa diminuição da transmissão de informação com o aumento do ruído (que parece bastante intuitiva para nós), nem sempre é verificada.

Alguns sistemas físicos e biológicos apresentam um fenômeno chamado coerência estocástica (ou ressonância estocástica) que, em palavras simples, consiste em um aumento da transmissão da informação induzido pelo aumento do ruído. Esses sistemas apresentam um valor de ruído ótimo, para o qual a transmissão de informação é máxima.

Voltando ao nosso exemplo da conversa em uma sala. Imagine hipoteticamente que esta sala apresentasse este efeito de ressonância estocástica. Isto significaria que a qualidade da comunicação entre você e sua amiga aumentaria com a entrada das primeiras pessoas na sala até um valor máximo. Existiria um número n de pessoas (uma certa quantidade de barulho) que ajudaria na transmissão da informação. O barulho só passaria a atrapalhar a conversa de vocês depois que a pessoa de número n+1 entrasse na sala. Parece pouco intuitivo não é?

Mas um exemplo verdadeiro desse fenômeno pode ser verificado na seguinte imagem [1]:

8_image

Figura modificada da Ref. [1]. À imagem original do Big Ben foi adicionada uma certa quantidade de ruído, que aumenta da figura da esquerda para a da direita. Note que para uma quantidade intermediária de ruído podemos reconhecer melhor a imagem.

Cada um dos 256×256 pixels da foto original digitalizada é representado por um número de 1 a 256 representando a escala de tons de cinza. Nas três imagens acima, a cada um desses pixels foi adicionado ao valor inicial um número aleatório (de maneira que a quantidade de ruído total adicionado a cada imagem aumenta da esquerda para direita [1]) Podemos notar que a imagem mais nítida é a do meio, indicando que existe um valor ótimo de ruído para o qual nosso cérebro interpreta melhor essa imagem como “Big Ben”. Em outras palavras, a natureza passou a utilizar a existência do ruído aleatório a seu favor.

Recentemente, a pesquisadora Belén Sancristobal e seus colaboradores, verificaram que este fenômeno da coerência estocástica ocorre em um modelo computacional de redes de neurônios conectados e também em uma rede de neurônios reais pertencentes a um pedacinho do córtex de um furão. Ao contrário de estudos anteriores em sistemas com apenas um neurônio, eles mostraram que a coerência estocástica pode ocorrer como um fenômeno coletivo e emergente. O ruído nesses experimentos contribui para deixar o sistema mais previsível. (Mais detalhes abaixo).

Em alguns estados especiais, por exemplo durante o sono de ondas lentas ou quando estamos anestesiados, a atividade elétrica de regiões corticais do nosso cérebro oscila em frequências da ordem de 1Hz entre dois estados bem definidos chamados UP e DOWN. Os estados UP são caracterizados pelos disparos de vários neurônios (atividade sustentada), estes disparos são parecidos com os que ocorrem durante momentos em que estamos acordados e saudáveis. Por outro lado, durante os estados DOWN a maioria dos neurônios se mantêm em silêncio. Esse estado oscilante entre UP e DOWN também já foi verificado em experimentos in vitro na ausência de estímulo externo. Isto indica que essas oscilações  podem ser uma atividade auto-sustentada que ocorre em redes relativamente pequenas devido, possivelmente, às conexões recorrentes entre os neurônios locais. A medida em que vamos despertando de um estado profundo de anestesia, a regularidade das oscilações de UP e DOWN diminuem até que desaparecem por completo quando estamos acordados (nos mantemos apenas em UP). Nesses estágios intermediários é mais difícil prever quando ocorrerá um estado UP. A natureza desses estados mais regulares durante a anestesia profunda ainda não é bem entendida na comunidade científica. Em particular, não se sabe se ela é determinística ou devido a ruído externo.

O estudo citado acima [2] abordou justamente esta questão. Eles mostraram que a regularidade da oscilações UP e DOWN, pelo menos em alguns casos específicos in vitro, está associada ao fenômeno da coerência estocástica.  Variando a excitabilidade neuronal através da concentração extracelular de  potássio, eles mostraram que o coeficiente de variação da duração dos estados UP e DOWN tem um mínimo para uma certa concentração específica de potássio. Sendo assim, eles provaram através de modelos computacionais e experimentos in vitro que existe um valor intermediário de ruído para o qual a regularidade das oscilações neuronais UP e DOWN é máxima. Além disso, como o trabalho utilizou redes de vários neurônios, estes resultados mostram que a coerência estocástica pode ocorrer como um fenômeno coletivo e emergente no nosso cérebro. Ou seja, apesar de cada neurônio individualmente do sistema não estar em um regime de coerência estocástica, esse regime surge (emerge) quando conectamos os neurônios uns aos outros de uma maneira específica.

Parece que, mais uma vez, a evolução garantiu a perpetuação de quem usou as adversidades do meio a seu favor e nos colocou em algum ponto ótimo.


8_image2

Figura modificada da Ref. [2].  Primeira evidência experimental da coerência estocástica em tecidos corticais. Esses dados foram obtidos no laboratório da  pesquisadora Mavi Sanchez Vives em Barcelona. No topo, séries temporais da atividade elétrica do tecido mostrando os estados UP e DOWN para três concentrações diferentes de potássio. Na base, medida da variabilidade dos estados como função da concentração de potássio em várias repetições do experimento (colorido) e o valor médio em preto. Note que no ponto ótimo [K+]=0 há um mínimo na variabilidade, indicando um máximo na previsibilidade dos estados UP e DOWN.

Referências:

[1] Simonotto, Enrico; Riani, Massimo; Seife, Charles; Roberts, Mark; Twitty, Jennifer; Moss, Frank (1997). “Visual Perception of Stochastic Resonance”. Physical Review Letters. 78 (6): 1186.

[2] Sancristóbal B, Rebollo B, Boada P, Sanchez-Vives MV, Garcia-Ojalvo J. Collective stochastic coherence in recurrent neuronal networks. Nature Physics. 2016 Sep;12(9):881.

 

Anúncios

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Foto do Google

Você está comentando utilizando sua conta Google. Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s