Cientista brasileira lidera projeto em busca da energia escura

Texto escrito em parceria com @ruajosephine.

Até o final da década de 1990 a expansão do universo ainda era uma incógnita. Não sabíamos ao certo se o universo era estático, se estava em expansão desacelerada ou acelerada.  A teoria da gravidade de Albert Einstein predizia que o universo teria energia suficiente para estar em expansão, mas que a gravidade faria esse fenômeno diminuir gradativamente. Em 1998, com as observações de supernovas através do telescópio espacial Hubble (HST) foi compreendido que o universo está realmente se expandindo, e a cada momento mais rápido! Ninguém sabia explicar o que tornaria sua expansão acelerada com o passar do tempo. E, por isso, imaginou-se uma energia capaz de contrapor a força gravitacional e, ao mesmo tempo, de difícil (talvez impossível?) detecção, chamada de energia escura.

E afinal, o que é energia escura?

Desconhecemos mais do que conhecemos. Sabemos a quantidade da energia escura pelo quanto que ela interfere na expansão do universo. Calcula-se que o espaço-tempo seja constituído de aproximadamente 68% de energia escura, 27% de matéria escura (outra força que ainda é um mistério) e menos de 5% de matéria “normal”, a matéria que conhecemos que forma planetas, estrelas e nós, conhecida como matéria bariônica. [1]

um

O diagrama acima representa as possíveis mudanças na taxa de expansão desde o surgimento do universo há quase 14 bilhões de anos. Crédito: NASA / STSci / Ann Feild.

As ciências físicas e astronômicas vêm investindo em pesquisas no campo da cosmologia para compreendermos melhor os fenômenos que acontecem no universo, desde a sua formação, sua expansão acelerada até as origens de elementos químicos. E uma das observações mais incríveis aconteceu no dia 17 de agosto de 2017: duas estrelas de nêutrons colidiram em uma galáxia há 130 milhões de anos-luz de distância da Terra e pela primeira vez detectamos esse tipo de evento [2]. A colisão, conhecida como kilonova, emitiu um pulso de ondas gravitacionais forte o suficiente para ser detectado pelos instrumentos do Observatório Interferométrico de Ondas Gravitacionais (LIGO), nos Estados Unidos, e do Observatório Interferométrico Europeu VIRGO, na Itália. O fenômeno permitiu calcular a atual taxa de expansão local do Universo, a constante de Hubble. O valor encontrado coincide com medidas da constante de Hubble obtidas por diversos outros métodos em pesquisas realizadas no mundo todo [3]. Foi a primeira vez que um evento de proporções astronômicas foi simultaneamente visto (em diferentes comprimentos de ondas) e ouvido (através da reconstrução do sinal das ondas gravitacionais), dando início a uma nova era da astronomia.

Uma das cientistas importantes envolvidas com a detecção é a astrofísica capixaba Marcelle Soares-Santos. Marcelle é coordenadora do projeto Dark Energy Survey (DES) que descobriu e analisou a contrapartida óptica do evento de onda gravitacional de agosto de 2017, GW170817. Lembra que falamos de “ver” e “ouvir” a colisão? A equipe que a Marcelle lidera é responsável pela parte do “ver” que de fato nossos olhos poderiam ver (luz visível).

Quem é Marcelle Soares-Santos

Marcelle é graduada em física pela Universidade Federal do Espírito Santo (UFES), mestra e doutora em astronomia pela Universidade de São Paulo (USP). Foi pós-doutoranda e, posteriormente, pesquisadora principal do Fermi National Accelerator Laboratory (Fermilab/EUA), um dos mais importantes centros de investigação sobre física de partículas. Ela era a única brasileira presente entre os 16 líderes de grupos de pesquisa ao anunciarem a detecção da colisão das estrelas de nêutrons na sede da National Science Foundation (EUA). Imagina: umas das 16 pessoas a chefiar os 3.500 cientistas por trás de uma das mais importantes descobertas da Ciência.

dois

A líder do DES, Marcelle Soares-Santos, na sede da National Science Foundation (EUA) divulgando os resultados da observação GW170817 no espectro óptico. Crédito: Dark Energy Survey.

Ela atua no Fermilab desde 2010, participando da construção de um dos maiores detectores de luz já construídos: uma câmera de 570 megapixels (aquelas câmeras profissionais que você acha incríveis têm em média 20 megapixels!!!), a DECam, instalada no telescópio Blanco no Cerro Tololo Inter-American Observatory (Chile). A DECam mapeia 300 milhões de galáxias para o projeto Dark Energy Survey. Foi com essa câmera que a equipe da Marcelle entrou para a História ao capturar e analisar a parte visível da colisão entre estrelas de nêutron de 2017, a primeira detecção de colisão desse tipo. Hoje Marcelle compartilha seus saberes sendo professora pesquisadora na Universidade Brandeis, em Massachusetts, também nos EUA.

tres

Imagem no espectro visível da colisão entre estrelas de nêutrons GW170817. À esquerda temos a imagem da kilonova até 1,5 dias depois da explosão. À direita percebemos que a explosão já não é tão visível após 14 dias. Créditos: Dark Energy Survey.

Convidada pelas Cientistas Feministas, Marcelle nos contou mais sobre sua carreira como astrofísica e sobre o projeto Dark Energy Survey.

Cientistas Feministas: A energia escura é um dos grandes mistérios da física. Mas o que lhe motivou, em particular, a estudar energia escura e a expansão do universo?

Marcelle: Minha curiosidade a respeito do mundo físico ao meu redor começou quando eu era criança. À medida que fui crescendo e avançando nos estudos, descobri que a Física era a disciplina certa para satisfazer essa curiosidade. O tópico da energia escura e expansão do universo, em particular, cativou meu interesse no último ano do ensino médio, quando li um artigo sobre cosmologia falando que mais de 2/3 do universo atual é composto de uma forma de energia cuja natureza física ainda é desconhecida. Entender a energia escura passou a ser um foco dos meus estudos a partir dali.

CsFs: Entender os processos de expansão do universo tem muitas barreiras principalmente por conta dos nossos limites tecnológicos. Se você pudesse obter qualquer observável no Universo, o que você imaginaria que seria o mais fantástico para avançar no entendimento sobre a energia escura?

M: O problema da energia escura é um desafio tão grande que a comunidade científica vai precisar de um conjunto grande e coerente de dados para resolvê-lo. Infelizmente não existe uma “bala de prata” que consiga esclarecer essa questão. É por isso que, por exemplo, meu grupo de pesquisa envolve desde estudos de aglomerados de galáxias e lentes gravitacionais (com a pesquisadora brasileira Dra. Maria Elidaiana Pereira, que veio para Brandeis em Outubro de 2017 depois de concluir o doutorado no CBPF, Rio de Janeiro) até o desenvolvimento de novas técnicas, como por exemplo, ondas gravitacionais.

CsFs: A captação da colisão de estrelas de nêutrons do dia 17 de agosto de 2017 repercutiu o mundo inteiro e pode revolucionar os estudos de física. Como você enxerga esse fenômeno e as possibilidades de mudanças para a ciência a partir dessas novas descobertas? E do ponto de vista do avanço no entendimento da energia escura?

M: O evento observado no dia 17 de agosto, conhecido pela sigla GW170817, foi importante para mim pessoalmente porque é a primeira vez que temos prova empírica de que podemos utilizar esses eventos para estudar a energia escura. Essa nova técnica que vinha sendo desenvolvida há anos pela comunidade realmente funciona! Foi importante para a comunidade científica no mundo inteiro porque abre uma nova janela observacional, que permite estudar vários fenômenos astrofísicos de uma nova perspectiva. A partir desse evento podemos agora estudar a origem de elementos pesados (como ouro, platina) no universo, podemos entender a evolução de estrelas de nêutrons, história de formação de sistemas estelares binários, física de partículas fundamentais como os neutrinos… Há uma variedade enorme de tópicos a serem estudados!

CsFs: Uma grande parte da sua pesquisa é identificar ondas gravitacionais no espaço a partir da DECam. Como o registro de ondas gravitacionais pode contribuir com seus estudos?

M: O papel da DECam é busca rápida a partir da detecção do evento de ondas gravitacionais pela rede de detectores LIGO/Virgo. Nossa câmera não é capaz de ver ondas gravitacionais, mas é capaz de identificar a fonte luminosa correspondente. Isso nos permite então combinar o sinal de ondas gravitacionais e as imagens do evento, para determinar suas propriedades.

CsFs: A câmera que vocês desenvolveram tem uma capacidade excepcional de registrar o universo. O que você espera da DECam com esses cinco anos de pesquisa e registros de imagens do universo?

M: Esperamos observar aproximadamente 10 eventos nos próximos anos!

CsFs: Trabalhar com grandes fenômenos da natureza certamente proporciona grandes emoções. Até agora qual foi o momento mais emocionante em sua carreira como cientista? Conte-nos detalhes dessa história!

M: O momento mais emocionante foi definitivamente 17 de agosto as 07h41min da manhã (Chicago time), quando GW170817 ocorreu. É muito raro a gente estar envolvido em uma descoberta dessa magnitude!

CsFs: O Fermilab é um dos maiores Institutos de física do mundo. Como foi trabalhar lá?

M: Tenho lembranças maravilhosas do tempo que passei no Fermilab. Trabalhar num centro de pesquisa grande pode ser muito estimulante e o grupo de Cosmologia e Astrofísica, em que eu trabalhei, é excepcional nesse sentido.

CsFs: Atualmente você é professora universitária na Brandeis University, em Massachusetts. Como está sendo essa transição de compartilhar o laboratório com a sala de aula?

M: Aqui em Brandeis, além de ensinar para formação da próxima geração de físicos, minha pesquisa está tomando novas dimensões. Eu agora tenho meu próprio grupo de pesquisa e planos de engajar estudantes e pós-doutores em projetos de grande impacto, em colaboração com uma comunidade acadêmica vibrante e inspiradora.

CsFs: Como a colisão de estrelas de nêutrons registrada em agosto desse ano repercutiu para seus alunos na faculdade?

M: A universidade toda, desde estudantes até o topo da administração, ficou muito entusiasmada. É maravilhoso ver um membro da nossa comunidade fazer uma descoberta de impacto!

É maravilhoso para nós vermos a Dra. Marcelle Soares-Santos desvendando os mistérios do universo! Estamos muito felizes em trazer uma cientista com a sua trajetória e sucesso para nos explicar questões cosmológicas. Ela nos inspirar a olhar para o céu e tentarmos entender quem somos (terráqueos viajantes do Cosmos).

Agradecimentos:

À Dra. Maria Elidaiana da Silva Pereira por ter intermediado essa entrevista. As CsFs desejam muito sucesso em Brandeis.

Referências:

[1] https://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy;

[2] https://cientistasfeministas.wordpress.com/2017/11/23/todo-o-ouro-do-universo-colisao-de-estrelas-de-neutrons/

[3] http://revistapesquisa.fapesp.br/2017/10/17/detectada-pela-primeira-vez-colisao-de-estrelas-de-neutrons-inaugura-nova-era-na-astronomia/.

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Foto do Google

Você está comentando utilizando sua conta Google. Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s