As luas geladas e suas implicações para a astrobiologia

Parte I

Nos últimos anos, assuntos como “luas geladas” bem como “suas implicações para a astrobiologia” têm sido recorrentes em diversas discussões acadêmicas e até mesmo dentro da mídia. Devido a importância dessas luas, e ao fato de estarem super “na moda” nos dias de hoje, em uma série de textos, pretendo contar para vocês um pouquinho mais sobre o quê são elas, quais são e as principais luas geladas, e porquê são tão importantes assim nos estudos da astrobiologia. Empolgadas então para o primeiro dos 5 textos que estão por vir sobre o assunto?

Então vamos começar! O que raios são essas luas geladas? Os satélites naturais, cobertos principalmente por gelo, que orbitam os gigantes gasosos do nosso Sistema Solar são conhecidos como luas geladas. Para que recebam esta nomenclatura é necessário que apresentem três pré-requisitos, sendo eles: a presença de um meio líquido, de uma fonte de energia e de condições necessárias para a formação de moléculas complexas. Esses também são considerados responsáveis pelo surgimento e pela manutenção da vida.

De acordo com essa classificação, existem diversas “luas geladas” no nosso sistema solar. Dentre elas podemos citar alguns satélites naturais de Júpiter, como Io, Europa, Ganimedes e Calisto (ver figura 1), de Saturno, como Encélado e Titã e de Urano e Netuno.

Perfeito! Agora já entendemos um pouco melhor sobre o quê são esses satélites. Vamos então, focar em um deles em particular, um dos mais promissores nos estudos de astrobiologia, a fim de conseguirmos ilustrar um pouco como esta lua se enquadra na classificação acima descrita. Europa, a sexta maior lua de Júpiter, por se enquadrar nestes pré-requisitos e por apresentar características significantes relacionadas ao estudo da habitabilidade fora da Terra, é considerada uma das “luas geladas” de maior interesse do ponto de vista astrobiológico.

Foto 1

Figura 1. Montagem das quatro principais “luas geladas” de Júpiter. De cima pra baixo: Io, Europa, Ganimedes e Calisto. Créditos da imagem: NASA/JPL/University of Arizona.

Nessa lua suspeitamos que os três pré-requisitos sejam: (1) para o meio líquido: água existente na forma de gelo na crosta de Europa e na forma líquida, encontrada em seu oceano interno; (2) como fonte de energia: força de maré originada no oceano interno da lua, decaimento radioativo de seu núcleo, e possivelmente também proveniente da radiação ionizante dos anéis radioativos de Júpiter; (3) condições necessárias para a formação de moléculas complexas: provável interação água líquida-rocha no leito oceânico da lua e possível origem exógena (de fontes externas à lua), devido ao intenso contexto de bombardeamento em que Europa está inserida.

Europa, embora uma das maiores do nosso Sistema, é a menor das quatro “luas geladas” orbitando Júpiter, com um diâmetro de aproximadamente 3.100 km . Ela é constituída por uma atmosfera pouco densa, formada principalmente de oxigênio molecular, originado a partir da radiólise da água em sua superfície; uma camada de água, com extensão estimada em 80-170 km dividida entre uma crosta congelada na porção superior e um oceano líquido logo abaixo; um manto rochoso; e um núcleo metálico (ver figura 2).

Foto 2

Figura 2. Representação da composição de Europa. Apresentação geral do núcleo metálico, do manto rochoso e da camada superior de água (à esquerda). Visão em mais detalhes da camada externa de água, composta por uma crosta congelada na porção superior e um oceano líquido logo abaixo (à direita). Atmosfera não representada. Créditos da imagem: Coustenis & Encrenaz, 2013.

Além disso, modelos atuais de Europa sugerem que condições como temperatura, pressão, pH e salinidade dos oceanos internos estão dentro dos limites capazes de suportar vida como conhecemos na Terra. Estudos anteriores também revelaram que a lua possui uma superfície plana, o que indica uma constante renovação da crosta a partir de processos geológicos como erupções locais de água aquecida; elevação e submersão de líquidos e de sólidos congelados; ruptura das camadas superficiais de gelo; translação e extensão de blocos da superfície e subsequente preenchimento destas regiões.

Devido a relevância e importância desta lua, tanto no contexto astrobiológico quanto no contexto cósmico de forma mais abrangente, agências espaciais como a Administração Nacional da Aeronáutica e Espaço (NASA) e a Agência Espacial Europeia (ESA) planejam missões ao satélite em um futuro próximo. A mais recente delas, Europa Mission (traduzido para o português como “Missão Europa”), está com lançamento previsto para 2020, segundo o Laboratório de Propulsão a Jato (JPL – NASA). Ela terá como principal objetivo obter uma melhor compreensão de Europa a partir da análise de sua superfície (para determinação de sua composição), da espessura de sua crosta congelada, da salinidade e da profundidade de seu oceano interno (através da medição do campo magnético da lua), e da investigação de suas erupções termais de água, anunciadas pela agência em setembro deste ano (NASA, 2016).

A segunda missão programada nesse caso pela ESA é a JUICE (acrônimo em inglês para “The JUpiter ICy moons Explorer”, em português “Explorador das Luas Geladas de Júpiter”), com lançamento previsto para 2022 e chegada em Júpiter em 2030. Seus principais objetivos serão diferentes da Missão Europa (NASA). JUICE buscará responder questões sobre o contexto cósmico acerca do funcionamento do Sistema Solar e das condições para a formação de planetas e para a emergência da vida, além de trabalhar com o uso do sistema jupiteriano como um arquétipo para melhor entender o desenvolvimento de gigantes gasosos. Embora esta missão tenha a lua Ganimedes como foco de trabalho, Calisto e Europa também serão estudados a fim de facilitar o entendimento sobre a emergência de mundos habitáveis formados ao redor de gigantes gasosos (ESA, 2016).

Espero ter conseguido mostrar para vocês que tem muita coisa super interessante acontecendo e muita gente envolvida em projetos de pesquisa com temas relacionados às “luas geladas”. Nos próximos textos vou contar um pouco mais pra você sobre cada uma dessas luas, para que juntas, possamos compreender um pouco mais sobre os nossos vizinhos cósmicos.

Referências:

ANDERSON, J. D. et al. Europa’s differentiated internal structure: Inferences from four Galileo encounters. Science, v. 281, n. 5385, p. 2019-2022, 1998.

BROWN, Robert H.; CRUIKSHANK, Dale P. The moons of Uranus, Neptune and Pluto. Scientific American, v. 253, p. 28-37, 1985.

CANUP, R. M.; WARD, W. R. Formation of the gallilean satellites: conditions of accretions. The Astronomical Journal, v. 124, n. 6, p. 3404-3423, 2002.

CARR, M. H. et al. Evidence for a subsurface ocean on Europa. Nature, v. 391, n. 6665, p. 363-365, 1998.

CHYBA, C. F. Energy for microbial life on Europa. Nature, v. 403, n. 6768, p. 381-382, 2000.

ESA. JUICE. Em: < http://sci.esa.int/juice/&gt;. Acesso em: 15 de novembro de 2016.

FIGUEREDO, P. H.; GREELEY, R. Resurfacing history of Europa from pole- -to-pole geological mapping. Icarus, v. 167, p. 287-312, 2004.

FILACCHIONE, G. et al. Saturn’s icy satellites investigated by Cassini-VIMS: I. Full-disk properties: 350–5100 nm reflectance spectra and phase curves. Icarus, v. 186, n. 1, p. 259-290, 2007.

GALANTE, D. et al. Astrobiologia [livro eletrônico]: uma ciência emergente. Tikinet Edição: IAG/USP, São Paulo, 2016.

GREELEY, R.; SPUDIS, P. D. Volcanism on Mars. Reviews of Geophysics, v. 19, n. 1, p. 13-41, 1981.

IRWIN, L. N.; SCHULZE-MAKUCH, D. Assessing the plausibility of life on other worlds. Astrobiology, v. 1, n. 2, p.143-160, 2001.

KARGEL, J. S. et al. Europa’s crust and ocean: origin, composition and the prospects for life. Icarus, v. 148, 39, 2000.

MCKINNON, W. B.; ZOLENSKY, M. E. Sulfate content of Europa’s ocean and shell: Evolutionary considerations and some geological and astrobiological implications. Astrobiology, v. 3, n. 4, p. 879-897, 2003.

NASA. Europa Mission. Em: < http://www.jpl.nasa.gov/missions/europa-mission/&gt; Acesso em 15 de novembro de 2016.

PARANICAS, C.; CARLSON, R. W.; JOHNSON, R. E. Electron bombardment of Europa. Geophys. Res. Lett, v. 28, n. 4, p. 673-676, 2001.

PASACHOFF, Jay M.; FILIPPENKO, Alex. The Cosmos: Astronomy in the new millennium. Cambridge University Press, 2013.

SCHUBERT, G. et al. Interior composition, structure and dynamics of the Galilean satellites. Jupiter: The planet, satellites and magnetosphere, v. 1, 2004.

SHOWMAN, A. P.; MALHOTRA, R. The Galilean satellites. Science, v. 286, p. 77-84, 1999.

WORTH, R. J.; SIGURDSSON, S.; HOUSE, C. H. Seeding life on the moons of the outer planets via lithopanspermia. Astrobiology, v. 13, p. 1155-1165, 2013.

ZOLOTOV, Mikhail Y.; SHOCK, Everett L. Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa. Journal of Geophysical Research: Planets, v. 108, n. E4, 2003.

 

Anúncios

4 comentários sobre “As luas geladas e suas implicações para a astrobiologia

  1. Pingback: As luas geladas e suas implicações para a astrobiologia: Conheça Europa | cientistasfeministas

  2. Pingback: As luas geladas e suas implicações para a astrobiologia: Viajando por Ganimedes, Calisto e Io | cientistasfeministas

  3. Pingback: As luas geladas e suas implicações para a astrobiologia: pelos anéis de Saturno | cientistasfeministas

  4. Pingback: As luas geladas e suas implicações para a astrobiologia – Bruna Contro Pretero

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Foto do Google

Você está comentando utilizando sua conta Google. Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s